Atomic and Molecular                                                                               Physics Program        ...
2012 AFOSR SPRING REVIEWNAME: Tatjana CurcicBRIEF DESCRIPTION OF PORTFOLIO:Understanding interactions between atoms, molec...
Scientific and Transformational                     OpportunitiesScientific Opportunities                                 ...
Outline•   Quantum Simulation, Strongly-Interacting Quantum Gases     •   Bosons: Markus Greiner, Harvard (MURI)         •...
Strongly-correlated quantum gasesOptical latticesAtoms interact strongly on lattice sitesSuperfluid - Mott insulator trans...
Quantum magnetism Ising model: quantum phase transition from paramagnet to antiferromagnetQuantum gas                 Algo...
Quantum Gas MicroscopeWaseem S. Bakr, et al, Nature 463, 74 (2009)                 Many new                 possibilities ...
Interaction induced orbital excitation                        blockade                                                    ...
Orbital excitation blockade operations                                                   1, 0 « 0,1                       ...
Algorithmic cooling DISTRIBUTION A: Approved for public release; distribution is unlimited.   10
Algorithmic cooling                     4           3                3           2            2   1 thermal               ...
Quantum Magnetism   Quantum simulation of an antiferromagnetic Ising spin chain                                           ...
Tilted Hubbard Model and Mapping to               Spin Model         realizes constraint         drives transitionH = J å ...
Adiabatic transition to the AF state                           Jonathan Simon, et al, Nature 472, 307 (2011)              ...
Selecting homogeneous domain     Magnetization (podd)•   6 adjacent sites that transition simultaneously (RMS shift 6 Hz)•...
Transitioning at highest and lowest     energy many-body state  Magnetization (podd)  Jonathan Simon, et al, Nature 472, 3...
Direct measurement of Neel order           parameter Normalized Neel order                                            Grad...
Outline•   Quantum Simulation, Strongly-Interacting Quantum Gases     •   Bosons: Markus Greiner, Harvard (MURI)         •...
Strongly Interacting Fermi Gases          in coupled quasi-2D layers          High-Tc Superconductor                      ...
Evolution of Fermion Pairing from                                         3D to 2D                            Ariel T. Som...
Evolution of Fermion Pairing from                       3D to 2D                   On Resonance                           ...
Spin Transport − “Little Fermi                         Collider” (LFC)                       Ariel Sommer, et al, Nature 4...
Thermodynamics of the Strongly-                Interacting Fermi GasRevealing the SuperfluidLambda Transition in aFermi Ga...
Outline•   Quantum Simulation, Strongly-Interacting Quantum Gases     •   Bosons: Markus Greiner, Harvard (MURI)         •...
Ultracold Dipolar Physics    DISTRIBUTION A: Approved for public release; distribution is unlimited.   25
Ultracold dipolar Bose and Fermi gases: Exotic quantum phases       DISTRIBUTION A: Approved for public release; distribut...
Laser cooling Dysprosium    DISTRIBUTION A: Approved for public release; distribution is unlimited.   27
Strongly Dipolar Dy BEC  M. Lu, N. Burdick, S.-H. Youn, and B. Lev, Phys. Rev. Lett. 107 190401 (2011)BECs of 164Dy and 16...
Evaporative cooling of all isotopes   Including identical fermions! T/TF = 1.3 in crossed ODT                             ...
First dipolar degenerate Fermi gas!                 161Dy   Sympathetically cooled with 161Dy to T/TF < 0.3 Oblate initial...
Outline•   Quantum Simulation, Strongly-Interacting Quantum Gases     •   Bosons: Markus Greiner, Harvard (MURI)         •...
Motivation: Al+ clock accuracy                                              Gravitational                                 ...
Quantum Logic Spectroscopy1P                                                                                              ...
Al+ quantum-logic spectroscopy                            1. Cool to motional ground-state with Mg+ (Raman cooling)       ...
Al+ coherent-drive spectroscopy                                   quantum-logic                                           ...
Al+ coherent-drive spectroscopy                                                                   D. B. Hume, et al., PRL1...
Quantum Jumps                 Quantum jumps between clock states (1S0 and 3P0)0.53 s average                              ...
Interactions with Other AgenciesAgency/Group   POC                                                           Scientific Ar...
Thank you            39
Upcoming SlideShare
Loading in …5
×

Curcic - Atomic and Molecular Physics Program - Spring Review 2012

804 views

Published on

Dr. Tatjana Curcic presents an overview of his program - Atomic and Molecular Physics Program - at the AFOSR 2012 Spring Review.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
804
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Curcic - Atomic and Molecular Physics Program - Spring Review 2012

  1. 1. Atomic and Molecular Physics Program 7 March 2012 Tatjana Curcic Program Manager AFOSR/RSE Integrity  Service  Excellence Air Force Research Laboratory15 February 2012 DISTRIBUTION A: Approved for public release; distribution is unlimited. 1
  2. 2. 2012 AFOSR SPRING REVIEWNAME: Tatjana CurcicBRIEF DESCRIPTION OF PORTFOLIO:Understanding interactions between atoms, molecules, ions, andradiation.LIST SUB-AREAS IN PORTFOLIO:• Cold Quantum Gases − Strongly-interacting quantum gases − Ultracold molecules − New phases of matter − Non-equilibrium quantum dynamics• Quantum Information Science (QIS) − Quantum simulation − Quantum communication − Quantum metrology, sensing, and imaging − Cavity optomechanics DISTRIBUTION A: Approved for public release; distribution is unlimited. 2
  3. 3. Scientific and Transformational OpportunitiesScientific Opportunities Transformational OpportunitiesDipolar Matter, Ultracold Molecules • Novel phases of matter • Ultracold chemistryQuantum Memories and Interfaces • Long-distance quantum communicationQuantum Simulation • High-Tc superconductivity • Novel phases of matterQuantum Metrology and Sensing • Ultra-high-precision clocks • High-resolution, high-sensitivity magnetometry • High-sensitivity gravimetry • Precision inertial navigation in GPS-denied environmentsNon-equilibrium Quantum Dynamics • Dynamic control of materials • Efficient optical devices DISTRIBUTION A: Approved for public release; distribution is unlimited. 3
  4. 4. Outline• Quantum Simulation, Strongly-Interacting Quantum Gases • Bosons: Markus Greiner, Harvard (MURI) • Algorithmic Cooling in Quantum Gases Waseem Bakr, et al, Nature 480, 500 (2011) • Quantum Magnetism Jonathan Simon, et al, Nature 472, 307 (2011) • Fermions: Martin Zwierlein, MIT (PECASE, MURI) • Evolution of Fermi Pairing from 3D to 2D Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012) • Spin Transport in a Strongly-Interacting Fermi Gas Ariel Sommer, et al, Nature 472, 201 (2011) • Thermodynamics of a Unitary Fermi Gas: Superfluid Lambda Transition Mark J.H. Ku, et al, Science (in print); K. Van Houcke, et al (submitted to Nature Physics)• Dipolar Matter: Benjamin Lev, UIUC/Stanford (YIP) • Dy BEC, and First Dipolar Degenerate Fermi Gas Mingwu Lu, et al, Phys. Rev. Lett. 107, 190401 (2011)• Quantum Metrology: Till Rosenband, NIST • Coherent Drive Spectroscopy D.B. Hume, et al, Phys. Rev. Lett. 107, 243902 (2011) DISTRIBUTION A: Approved for public release; distribution is unlimited. 4
  5. 5. Strongly-correlated quantum gasesOptical latticesAtoms interact strongly on lattice sitesSuperfluid - Mott insulator transitionSynthetic matter, quantum simulations Electrons in a crystal lattice Atoms in an optical latticeStrongly correlated materials Quasi-low High Tc superconductors Quantum magnets dimensional DISTRIBUTION A: Approved for public release; distribution is unlimited. materials 5
  6. 6. Quantum magnetism Ising model: quantum phase transition from paramagnet to antiferromagnetQuantum gas Algorithmic Quantummicroscope cooling magnetism DISTRIBUTION A: Approved for public release; distribution is unlimited. 6
  7. 7. Quantum Gas MicroscopeWaseem S. Bakr, et al, Nature 463, 74 (2009) Many new possibilities for • Detection • Manipulation • Cooling • Creating new systems DISTRIBUTION A: Approved for public release; distribution is unlimited. 7
  8. 8. Interaction induced orbital excitation blockade 0, 2Axial vibrationalexcitationnground , nexcited 1,1 0,1 2, 0 1, 0 DISTRIBUTION A: Approved for public release; distribution is unlimited. 8
  9. 9. Orbital excitation blockade operations 1, 0 « 0,1 2, 0 « 1,1 3, 0 « 2,1 DISTRIBUTION A: Approved for public release; distribution is unlimited. 9
  10. 10. Algorithmic cooling DISTRIBUTION A: Approved for public release; distribution is unlimited. 10
  11. 11. Algorithmic cooling 4 3 3 2 2 1 thermal MI Waseem Bakr, et al, Nature 480, 500 (2011) DISTRIBUTION A: Approved for public release; distribution is unlimited. 11
  12. 12. Quantum Magnetism Quantum simulation of an antiferromagnetic Ising spin chain H = J å Szi Szi+1 - hz Szi - hx Sx i ihx =0: classical first order phase transitionFinite hx: quantum phase transition, second order DISTRIBUTION A: Approved for public release; distribution is unlimited. 12
  13. 13. Tilted Hubbard Model and Mapping to Spin Model realizes constraint drives transitionH = J å S S - (1- D) S - 2 t S i i+1 i 3/2 i D = E -U z z z x i E: energy difference per lattice site, or lattice tilt hz hx U: onsite interaction DISTRIBUTION A: Approved for public release; distribution is unlimited. 13
  14. 14. Adiabatic transition to the AF state Jonathan Simon, et al, Nature 472, 307 (2011) • High magnetic field: spins align with field • Low magnetic field: antiferromagnetic interactions dominate, producing Neel orderModulation spectroscopy: Direct spin imagingturn double occupancy = = preliminaryinto single occupancy DISTRIBUTION A: Approved for public release; distribution is unlimited. 14
  15. 15. Selecting homogeneous domain Magnetization (podd)• 6 adjacent sites that transition simultaneously (RMS shift 6 Hz)• Compare to 10%-90% width (105 Hz) and transverse field (28 Hz) DISTRIBUTION A: Approved for public release; distribution is unlimited. 15
  16. 16. Transitioning at highest and lowest energy many-body state Magnetization (podd) Jonathan Simon, et al, Nature 472, 307 (2011) DISTRIBUTION A: Approved for public release; distribution is unlimited. 16
  17. 17. Direct measurement of Neel order parameter Normalized Neel order Gradient E/U DISTRIBUTION A: Approved for public release; distribution is unlimited. 17
  18. 18. Outline• Quantum Simulation, Strongly-Interacting Quantum Gases • Bosons: Markus Greiner, Harvard (MURI) • Algorithmic Cooling in Quantum Gases Waseem Bakr, et al, Nature 480, 500 (2011) • Quantum Magnetism Jonathan Simon, et al, Nature 472, 307 (2011) • Fermions: Martin Zwierlein, MIT (PECASE, MURI) • Evolution of Fermi Pairing from 3D to 2D Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012) • Spin Transport in a Strongly-Interacting Fermi Gas Ariel Sommer, et al, Nature 472, 201 (2011) • Thermodynamics of a Unitary Fermi Gas: Superfluid Lambda Transition Mark J.H. Ku, et al, Science (in print); K. Van Houcke, et al (submitted to Nature Physics)• Dipolar Matter: Benjamin Lev, UIUC/Stanford (YIP) • Dy BEC, and First Dipolar Degenerate Fermi Gas Mingwu Lu, et al, Phys. Rev. Lett. 107, 190401 (2011)• Quantum Metrology: Till Rosenband, NIST • Coherent Drive Spectroscopy D.B. Hume, et al, Phys. Rev. Lett. 107, 243902 (2011) DISTRIBUTION A: Approved for public release; distribution is unlimited. 18
  19. 19. Strongly Interacting Fermi Gases in coupled quasi-2D layers High-Tc Superconductor Stacks of 2D coupled with stacks of CuO planes fermionic superfluids• Access physics of layered superconductors• Evolution of Fermion Pairing from 3D to 2D• Berezinskii-Kosterlitz-Thouless transition in deep 2D limit DISTRIBUTION A: Approved for public release; distribution is unlimited. 19
  20. 20. Evolution of Fermion Pairing from 3D to 2D Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012)Density of States: 3D ~  Direct consequence: 2D const. Always a bound state in 2D3D V0 = 2 ER RF spectroscopy: Atom transfer [a.u.] V0 = 5 ER V0 = 6 ER V0 = 10 ER V0 = 12 ER V0 = 19 ER2D V0 = 20 ER RF Offset [kHz] DISTRIBUTION A: Approved for public release; distribution is unlimited. 20
  21. 21. Evolution of Fermion Pairing from 3D to 2D On Resonance E  0.244z (in harmonic trap): B ,th Resonance d/a = 0 3D BCS d/a = -1.2 3D BCS d/a = -2.7 3D 2D• Observed fermion pairing from 3D to 2D Are those pairs superfluid? Study coherence, thermodynamics, rotation… What is TC as a function of interlayer tunneling? Towards a recipe for high TC DISTRIBUTION A: Approved for public release; distribution is unlimited. 21
  22. 22. Spin Transport − “Little Fermi Collider” (LFC) Ariel Sommer, et al, Nature 472, 201 (2011) Spin Diffusion vs. Temperature Quantum Limit of Spin Diffusion 3/2 T  Fit: 6.3(3)   m  TF 5.8 m DISTRIBUTION A: Approved for public release; distribution is unlimited. 22
  23. 23. Thermodynamics of the Strongly- Interacting Fermi GasRevealing the SuperfluidLambda Transition in aFermi GasMark J.H. Ku, et al, Science (in print)“Feynman diagramsversus Feynmanquantum emulator”K. Van Houcke, et al (submitted toNature Physics) DISTRIBUTION A: Approved for public release; distribution is unlimited. 23
  24. 24. Outline• Quantum Simulation, Strongly-Interacting Quantum Gases • Bosons: Markus Greiner, Harvard (MURI) • Algorithmic Cooling in Quantum Gases Waseem Bakr, et al, Nature 480, 500 (2011) • Quantum Magnetism Jonathan Simon, et al, Nature 472, 307 (2011) • Fermions: Martin Zwierlein, MIT (PECASE, MURI) • Evolution of Fermi Pairing from 3D to 2D Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012) • Spin Transport in a Strongly-Interacting Fermi Gas Ariel Sommer, et al, Nature 472, 201 (2011) • Thermodynamics of a Unitary Fermi Gas: Superfluid Lambda Transition Mark J.H. Ku, et al, Science (in print); K. Van Houcke, et al (submitted to Nature Physics)• Dipolar Matter: Benjamin Lev, UIUC/Stanford (YIP) • Dy BEC, and First Dipolar Degenerate Fermi Gas Mingwu Lu, et al, Phys. Rev. Lett. 107, 190401 (2011)• Quantum Metrology: Till Rosenband, NIST • Coherent Drive Spectroscopy D.B. Hume, et al, Phys. Rev. Lett. 107, 243902 (2011) DISTRIBUTION A: Approved for public release; distribution is unlimited. 24
  25. 25. Ultracold Dipolar Physics DISTRIBUTION A: Approved for public release; distribution is unlimited. 25
  26. 26. Ultracold dipolar Bose and Fermi gases: Exotic quantum phases DISTRIBUTION A: Approved for public release; distribution is unlimited. 26
  27. 27. Laser cooling Dysprosium DISTRIBUTION A: Approved for public release; distribution is unlimited. 27
  28. 28. Strongly Dipolar Dy BEC M. Lu, N. Burdick, S.-H. Youn, and B. Lev, Phys. Rev. Lett. 107 190401 (2011)BECs of 164Dy and 162Dy 0o 1.5x104 1.5 x 104 atoms DISTRIBUTION A: Approved for public release; distribution is unlimited. 28
  29. 29. Evaporative cooling of all isotopes Including identical fermions! T/TF = 1.3 in crossed ODT Single beam ODT Ultracold dipolar Bose-Fermi mixtures! Universal dipolar scattering? Bohn, Cavagnero, Ticknor, New J. Phys. `09 DISTRIBUTION A: Approved for public release; distribution is unlimited. 29
  30. 30. First dipolar degenerate Fermi gas! 161Dy Sympathetically cooled with 161Dy to T/TF < 0.3 Oblate initial trap Fermionic 161Dy time-of-flight expansionSingle shot: 6 x 103 atoms Average of three shots Green: Maxwell-Boltzmann Red: Fermi-Dirac T/TF = 0.25 manuscript in preparation DISTRIBUTION A: Approved for public release; distribution is unlimited. 30
  31. 31. Outline• Quantum Simulation, Strongly-Interacting Quantum Gases • Bosons: Markus Greiner, Harvard (MURI) • Algorithmic Cooling in Quantum Gases Waseem Bakr, et al, Nature 480, 500 (2011) • Quantum Magnetism Jonathan Simon, et al, Nature 472, 307 (2011) • Fermions: Martin Zwierlein, MIT (PECASE, MURI) • Evolution of Fermi Pairing from 3D to 2D Ariel T. Sommer, et al, Phys. Rev. Lett. 108, 045302 (2012) • Spin Transport in a Strongly-Interacting Fermi Gas Ariel Sommer, et al, Nature 472, 201 (2011) • Thermodynamics of a Unitary Fermi Gas: Superfluid Lambda Transition Mark J.H. Ku, et al, Science (in print); K. Van Houcke, et al (submitted to Nature Physics)• Dipolar Matter: Benjamin Lev, UIUC/Stanford (YIP) • Dy BEC, and First Dipolar Degenerate Fermi Gas Mingwu Lu, et al, Phys. Rev. Lett. 107, 190401 (2011)• Quantum Metrology: Till Rosenband, NIST • Coherent Drive Spectroscopy D.B. Hume, et al, Phys. Rev. Lett. 107, 243902 (2011) DISTRIBUTION A: Approved for public release; distribution is unlimited. 31
  32. 32. Motivation: Al+ clock accuracy Gravitational shift: Height accuracyClock NIST, Boulder, 1m USA redshift uncertainty 10 cm 1 cm 1 mm DISTRIBUTION A: Approved for public release; distribution is unlimited. 32
  33. 33. Quantum Logic Spectroscopy1P Coulomb 1 interaction 2P 3/2 3P 0 Al+ optical |↑ 𝑀𝑔  = 167 nm qubit  = 267 nm 2S Mg+ 1/2 hyperfine 1S 0 qubit |↓ 𝑀𝑔 transfer information to 25Mg+ DISTRIBUTION A: Approved for public release; distribution is unlimited. 33
  34. 34. Al+ quantum-logic spectroscopy 1. Cool to motional ground-state with Mg+ (Raman cooling) 2. Depending on Al+ clock state, add one vibrational quantum via 1S0-3P1QND 3. Detect vibrational quantum with Mg+ 0.8 0.14 27Al+ 1S 27Al+ 3P 0 3P 1 (300 ms) 0.7 0 3P (21 s) 0.12 0 Mean = 1.3 Mean = 6.9 0.6 0.1 27Al+ 0.5 Probability Probability 0.08 I = 5/2 0.4 1S 0 0.06 0.3 99.94% Detection fidelity 0.04 0.2 P.O. Schmidt, et al. Science 309, 749 (2005) 0.1 0.02 D. B. Hume, et al. PRL 99, 120502 (2007) 0 0 0 10 20 0 10 20 PMT counts Mg+ photon counts DISTRIBUTION A: Approved for public release; distribution is unlimited. 34
  35. 35. Al+ coherent-drive spectroscopy quantum-logic Mg+ Doppler 1. Cool to motional ground-state with Mg+ (Raman cooling) drive coherent motion 2. Depending on Al+ clock state, add one vibrational quantum via 1S0-3P1QND 3. Detect vibrational quantum with Mg+ coherent motion 0.8 0.14 27Al+ 3P 27Al+ 1S 0 0.7 0 D. B. Hume, et al. 0.12 Mean = 1.3 Mean = 6.9 PRL 107, 243902 (2011) 0.6 0.1 3P 1(300 ms) Measure s) 3P (21 Probability 0.5 quantum 0 state Probability 0.08 0.4 w/o scattering 0.06 photons Al+ 27 0.3 99.94% Detection fidelity 27Al+ 1S 27Al+ 3P 0 0.04 0 1S Simplified 5/2 I= 0.2 0 lasers 0.1 0.02 (no ground- state cooling) 0 0 0 10 20 0 10 20 PMT counts + Mg photon counts A: Approved for public release; distribution is unlimited. Slower DISTRIBUTION 35
  36. 36. Al+ coherent-drive spectroscopy D. B. Hume, et al., PRL107, 243902 (2011) 250 μs 400 μs 200 μs 27Al+ 1S 27Al+ 3P 0 0 DISTRIBUTION A: Approved for public release; distribution is unlimited. 36
  37. 37. Quantum Jumps Quantum jumps between clock states (1S0 and 3P0)0.53 s average 1S 0 93% state-detection fidelity within 80 ms 3P with quantum logic: 0 99% within 10 ms● Coherent drive detection rate could be improved by higher modulation amplitude or photon collection efficiency● Can be generalized for more than one Al+ ion DISTRIBUTION A: Approved for public release; distribution is unlimited. 37
  38. 38. Interactions with Other AgenciesAgency/Group POC Scientific AreaARO Peter Reynolds Cold Quantum Gases Paul Baker (CQG) TR Govindan Quantum Information Science (QIS) Rich Hammond Ultrafast/Ultraintense Phenomena (UUP)ONR Charles Clark CQG, QIS Ralph Wachter QISDARPA Jamil Abo-Shaeer CQG, QIS Jag Shah QIS Matt Goodman QISNSF Wendell Hill CQG, QIS, UUPDoE Jeff Krause CQG, UUPIARPA Michael Mandelberg QISQISCOG >20 program managers from QIS ~10 agencies/institutions DISTRIBUTION A: Approved for public release; distribution is unlimited. 38
  39. 39. Thank you 39

×