SlideShare a Scribd company logo
1 of 11
CIRCLES




           PRESENTED BY
          ADAMYA SHYAM
CIRCLE
                         DEFINITION
A Circle is a simple shape of Euclidean geometry that is the set
of points in the plane that are equidistant from a given
point, the centre. The distance between any of the points on the
circle and the centre is called the radius. A circle is a simple
closed curve which divides the plane into 3 regions:
Interior, Exterior and On The Circle . In everyday use, the term
"circle" may be used interchangeably to refer to either the
boundary of the figure, or to the whole figure including its
interior; in strict technical usage, the circle is the former and the
latter is called a disk. A circle can be defined as the curve traced
out by a point that moves so that its distance from a given point
is constant. A circle may also be defined as a special ellipse in
which the two foci are coincident and the eccentricity is 0.
Circles are conic sections attained when a right circular cone is
intersected by a plane perpendicular to the axis of the cone.
CIRCLE
                            HISTORY
The word "circle" derives from the Greek, kirkos "a circle," from the
base Ker- which means to turn or bend. The origins of the words
"circus" and "circuit" are closely related. The circle has been known
since before the beginning of recorded history. Natural circles
would have been observed, such as the Moon, Sun, and a short
plant stalk blowing in the wind on sand, which forms a circle shape
in the sand. The circle is the basis for the wheel, which, with related
inventions such as gears, makes much of modern civilization
possible. In mathematics, the study of the circle has helped inspire
the development of geometry, astronomy, and calculus. Early
science, particularly geometry and astrology and astronomy was
connected to the divine for most medieval scholars, and many
believed that there was something intrinsically "divine" or "perfect"
that could be found in circles.
CIRCLE
                  TERMINOLOGY
Chord:    A line segment whose endpoints lie on the circle.
Diameter: A line segment whose endpoints lie on the Circle
          and which passes through the centre.
Radius:   Half of Diameter
Arc:      Any connected part of the circle's circumference.
Sector:   A region bounded by two radii and an arc lying
          between the radii.
Segment: A region bounded by a chord and an arc lying
          between the chord's endpoints.
CIRCLE
                             CHORD
Chords are equidistant from the centre of a circle if and only if
they are equal in length. If a central angle and an inscribed angle
of a circle are subtended by the same chord and on the same side
of the chord, then the central angle is twice the inscribed angle. If
two angles are inscribed on the same chord and on the same side
of the chord, then they are equal. If two angles are inscribed on
the same chord and on opposite sides of the chord, then they are
supplemental. An inscribed angle subtended by a diameter is a
right angle. The diameter is the longest chord of the circle. If the
intersection of any two perpendicular chords divides one chord
into lengths a and b and divides the other chord into lengths c
and d, then a2 + b2 + c2 + d2 equals the square of the diameter.
The distance from a point on the circle to a given chord times the
diameter of the circle equals the product of the distances from
the point to the ends of the chord.
CIRCLE
                        DIAMETER
In geometry, the diameter of a circle is any straight line
segment that passes through the center of the circle and
whose endpoints are on the boundary of the circle. The
diameters are the longest chords of the circle. In this sense
one speaks of diameter rather than a diameter, because all
diameters of a circle have the same length, this being twice
the radius. For a convex shape in the plane, the diameter is
defined to be the largest distance that can be formed
between two opposite parallel lines tangent to its
boundary, and the width is defined to be the smallest such
distance. For a curve of constant width such as the Reuleaux
triangle, the width and diameter are the same because all
such pairs of parallel tangent lines have the same distance.
See also Tangent lines to circles.
CIRCLE
                           RADIUS
In classical geometry, a radius of a circle is any line segment
from its center to its perimeter. By extension, the radius of a
circle or sphere is the length of any such segment, which is half
the diameter. If the object does not have an obvious center, the
term may refer to its circum radius, the radius of its
circumscribed circle . In either case, the radius may be more
than half the diameter, which is usually defined as the
maximum distance between any two points of the figure. The in
radius of a geometric figure is usually the radius of the largest
circle or sphere contained in it. The inner radius of a ring, tube
or other hollow object is the radius of its cavity. For regular
polygons, the radius is the same as its circumradius.The name
comes from Latin radius, meaning "ray" but also the spoke of a
chariot wheel.
CIRCLE
                      ARC & SECTOR
In geometry, an arc is a closed segment of a differentiable curve
in the two-dimensional plane; for example, a circular arc is a
segment of the circumference of a circle. If the arc is part of a
great circle , it is called a great arc.
A circular sector or circle sector, is the portion of a disk
enclosed by two radii and an arc, where the smaller area is
known as the minor sector and the larger being the major
sector. In the diagram, θ is the central angle in radians, the
radius of the circle, and is the arc length of the minor sector. A
sector with the central angle of 180° is called a semicircle.
Sectors with other central angles are sometimes given special
names, these include quadrants (90°), sextants (60°) and
octants (45°).
CIRCLE
                         SEGMENT
In geometry, a circular segment is an area of a circle informally
defined as an area which is "cut off" from the rest of the circle
by a chord. The circle segment constitutes the part between
the secant and an arc, excluding of the circle's center.


                          SEGMENT
                            CHORD
                             RADIUS
                          CENTRE
                            DIAMETER
                           SECTOR
CIRCLE
                         THEOREMS
The chord theorem states that if two chords, CD and EB, intersect
at A, then CA × DA = EA × BA. If a tangent from an external point D
meets the circle at C and a secant from the external point D meets
the circle at G and E respectively, then DC2 = DG × DE. If two
secants, DG and DE, also cut the circle at H and F respectively, then
DH × DG = DF × DE. The angle between a tangent and chord is
equal to one half the subtended angle on the opposite side of the
chord. If the angle subtended by the chord at the centre is 90
degrees then l = r√2, where l is the length of the chord and r is the
radius of the circle. If two secants are inscribed in the circle as
shown at right, then the measurement of angle A is equal to one
half the difference of the measurements of the enclosed arcs.
Circles

More Related Content

What's hot

What's hot (20)

Circles
CirclesCircles
Circles
 
Area and perimeter
Area and perimeterArea and perimeter
Area and perimeter
 
Area and circumference of circles
Area and circumference of circlesArea and circumference of circles
Area and circumference of circles
 
Maths presentation
Maths presentationMaths presentation
Maths presentation
 
Geometry Vocabulary: Lines and Angles
Geometry Vocabulary: Lines and AnglesGeometry Vocabulary: Lines and Angles
Geometry Vocabulary: Lines and Angles
 
Areas Related to Circles
Areas Related to CirclesAreas Related to Circles
Areas Related to Circles
 
Circles class 9
Circles class 9Circles class 9
Circles class 9
 
area related to circle
area related to circlearea related to circle
area related to circle
 
Surface areas and volume
Surface areas and volumeSurface areas and volume
Surface areas and volume
 
Circle and its parts
Circle and its partsCircle and its parts
Circle and its parts
 
Circles for X class
Circles for X classCircles for X class
Circles for X class
 
Cones
ConesCones
Cones
 
4 Geometry Area and Perimeter
4 Geometry Area and Perimeter4 Geometry Area and Perimeter
4 Geometry Area and Perimeter
 
Circle
CircleCircle
Circle
 
surface area and volume class 10
surface area and volume class 10surface area and volume class 10
surface area and volume class 10
 
Circles
CirclesCircles
Circles
 
Surface area and volume of a cylinder
Surface area and volume of a cylinderSurface area and volume of a cylinder
Surface area and volume of a cylinder
 
Area of a triangle
Area of a triangleArea of a triangle
Area of a triangle
 
Circle
CircleCircle
Circle
 
Quadrilateral presentation
Quadrilateral presentationQuadrilateral presentation
Quadrilateral presentation
 

Similar to Circles

Similar to Circles (20)

Circle
CircleCircle
Circle
 
Math's assignment ON circles
Math's assignment ON circlesMath's assignment ON circles
Math's assignment ON circles
 
Digital sherin
Digital sherinDigital sherin
Digital sherin
 
Basic Concepts of Circles
Basic Concepts of CirclesBasic Concepts of Circles
Basic Concepts of Circles
 
Cirlce
CirlceCirlce
Cirlce
 
Circle
CircleCircle
Circle
 
radius ofcircle.pdf
radius ofcircle.pdfradius ofcircle.pdf
radius ofcircle.pdf
 
A presentation on mathematics
A presentation on mathematicsA presentation on mathematics
A presentation on mathematics
 
Maths Circle Presentation For Std.8 CBSE
Maths Circle Presentation For Std.8 CBSEMaths Circle Presentation For Std.8 CBSE
Maths Circle Presentation For Std.8 CBSE
 
Circle and sphere
Circle and sphereCircle and sphere
Circle and sphere
 
Basic geometrical Ideas - Circles and related terms
Basic geometrical Ideas - Circles and related termsBasic geometrical Ideas - Circles and related terms
Basic geometrical Ideas - Circles and related terms
 
Circle
CircleCircle
Circle
 
Circles
Circles   Circles
Circles
 
TEXT BOOK
TEXT BOOKTEXT BOOK
TEXT BOOK
 
Areas related to Circles - class 10 maths
Areas related to Circles - class 10 maths Areas related to Circles - class 10 maths
Areas related to Circles - class 10 maths
 
Circles | Parts and Relations
Circles | Parts and RelationsCircles | Parts and Relations
Circles | Parts and Relations
 
Chord of a Circle Definition Formula Theorem & Examples.pdf
Chord of a Circle Definition Formula Theorem & Examples.pdfChord of a Circle Definition Formula Theorem & Examples.pdf
Chord of a Circle Definition Formula Theorem & Examples.pdf
 
circles
circlescircles
circles
 
Circle
CircleCircle
Circle
 
Circle
CircleCircle
Circle
 

More from Adamya Shyam

More from Adamya Shyam (8)

Ajay jadeja
Ajay jadejaAjay jadeja
Ajay jadeja
 
Scarlet minivet
Scarlet minivetScarlet minivet
Scarlet minivet
 
Gitanzali
GitanzaliGitanzali
Gitanzali
 
Food habits of india & u.k.
Food habits of india & u.k.Food habits of india & u.k.
Food habits of india & u.k.
 
Cricket
CricketCricket
Cricket
 
Computer
ComputerComputer
Computer
 
Pythagoras
PythagorasPythagoras
Pythagoras
 
Triangles
TrianglesTriangles
Triangles
 

Recently uploaded

Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...Nguyen Thanh Tu Collection
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...DhatriParmar
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseCeline George
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQuiz Club NITW
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Developmentchesterberbo7
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 

Recently uploaded (20)

Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 Database
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Development
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 

Circles

  • 1. CIRCLES PRESENTED BY ADAMYA SHYAM
  • 2. CIRCLE DEFINITION A Circle is a simple shape of Euclidean geometry that is the set of points in the plane that are equidistant from a given point, the centre. The distance between any of the points on the circle and the centre is called the radius. A circle is a simple closed curve which divides the plane into 3 regions: Interior, Exterior and On The Circle . In everyday use, the term "circle" may be used interchangeably to refer to either the boundary of the figure, or to the whole figure including its interior; in strict technical usage, the circle is the former and the latter is called a disk. A circle can be defined as the curve traced out by a point that moves so that its distance from a given point is constant. A circle may also be defined as a special ellipse in which the two foci are coincident and the eccentricity is 0. Circles are conic sections attained when a right circular cone is intersected by a plane perpendicular to the axis of the cone.
  • 3. CIRCLE HISTORY The word "circle" derives from the Greek, kirkos "a circle," from the base Ker- which means to turn or bend. The origins of the words "circus" and "circuit" are closely related. The circle has been known since before the beginning of recorded history. Natural circles would have been observed, such as the Moon, Sun, and a short plant stalk blowing in the wind on sand, which forms a circle shape in the sand. The circle is the basis for the wheel, which, with related inventions such as gears, makes much of modern civilization possible. In mathematics, the study of the circle has helped inspire the development of geometry, astronomy, and calculus. Early science, particularly geometry and astrology and astronomy was connected to the divine for most medieval scholars, and many believed that there was something intrinsically "divine" or "perfect" that could be found in circles.
  • 4. CIRCLE TERMINOLOGY Chord: A line segment whose endpoints lie on the circle. Diameter: A line segment whose endpoints lie on the Circle and which passes through the centre. Radius: Half of Diameter Arc: Any connected part of the circle's circumference. Sector: A region bounded by two radii and an arc lying between the radii. Segment: A region bounded by a chord and an arc lying between the chord's endpoints.
  • 5. CIRCLE CHORD Chords are equidistant from the centre of a circle if and only if they are equal in length. If a central angle and an inscribed angle of a circle are subtended by the same chord and on the same side of the chord, then the central angle is twice the inscribed angle. If two angles are inscribed on the same chord and on the same side of the chord, then they are equal. If two angles are inscribed on the same chord and on opposite sides of the chord, then they are supplemental. An inscribed angle subtended by a diameter is a right angle. The diameter is the longest chord of the circle. If the intersection of any two perpendicular chords divides one chord into lengths a and b and divides the other chord into lengths c and d, then a2 + b2 + c2 + d2 equals the square of the diameter. The distance from a point on the circle to a given chord times the diameter of the circle equals the product of the distances from the point to the ends of the chord.
  • 6. CIRCLE DIAMETER In geometry, the diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints are on the boundary of the circle. The diameters are the longest chords of the circle. In this sense one speaks of diameter rather than a diameter, because all diameters of a circle have the same length, this being twice the radius. For a convex shape in the plane, the diameter is defined to be the largest distance that can be formed between two opposite parallel lines tangent to its boundary, and the width is defined to be the smallest such distance. For a curve of constant width such as the Reuleaux triangle, the width and diameter are the same because all such pairs of parallel tangent lines have the same distance. See also Tangent lines to circles.
  • 7. CIRCLE RADIUS In classical geometry, a radius of a circle is any line segment from its center to its perimeter. By extension, the radius of a circle or sphere is the length of any such segment, which is half the diameter. If the object does not have an obvious center, the term may refer to its circum radius, the radius of its circumscribed circle . In either case, the radius may be more than half the diameter, which is usually defined as the maximum distance between any two points of the figure. The in radius of a geometric figure is usually the radius of the largest circle or sphere contained in it. The inner radius of a ring, tube or other hollow object is the radius of its cavity. For regular polygons, the radius is the same as its circumradius.The name comes from Latin radius, meaning "ray" but also the spoke of a chariot wheel.
  • 8. CIRCLE ARC & SECTOR In geometry, an arc is a closed segment of a differentiable curve in the two-dimensional plane; for example, a circular arc is a segment of the circumference of a circle. If the arc is part of a great circle , it is called a great arc. A circular sector or circle sector, is the portion of a disk enclosed by two radii and an arc, where the smaller area is known as the minor sector and the larger being the major sector. In the diagram, θ is the central angle in radians, the radius of the circle, and is the arc length of the minor sector. A sector with the central angle of 180° is called a semicircle. Sectors with other central angles are sometimes given special names, these include quadrants (90°), sextants (60°) and octants (45°).
  • 9. CIRCLE SEGMENT In geometry, a circular segment is an area of a circle informally defined as an area which is "cut off" from the rest of the circle by a chord. The circle segment constitutes the part between the secant and an arc, excluding of the circle's center. SEGMENT CHORD RADIUS CENTRE DIAMETER SECTOR
  • 10. CIRCLE THEOREMS The chord theorem states that if two chords, CD and EB, intersect at A, then CA × DA = EA × BA. If a tangent from an external point D meets the circle at C and a secant from the external point D meets the circle at G and E respectively, then DC2 = DG × DE. If two secants, DG and DE, also cut the circle at H and F respectively, then DH × DG = DF × DE. The angle between a tangent and chord is equal to one half the subtended angle on the opposite side of the chord. If the angle subtended by the chord at the centre is 90 degrees then l = r√2, where l is the length of the chord and r is the radius of the circle. If two secants are inscribed in the circle as shown at right, then the measurement of angle A is equal to one half the difference of the measurements of the enclosed arcs.