Realtime Analytics with Apache Cassandra - JAX London

Acunu
AcunuAcunu
Realtime Analytics
  with Apache
   Cassandra
        Tom Wilkie
 Founder & CTO, Acunu Ltd
       @tom_wilkie
Combining “big” and “real-time” is hard

    Live & historical                    Drill downs
                         Trends...
      aggregates...                      and roll ups




2
                                                        Analytics
Solution              Con

                       Scalability
                         $$$


                      Not realtime


               Spartan query semantics =>
                 complex, DIY solutions

3
                                            Analytics
Example I
    eg “show me the number of mentions of
        ‘Acunu’ per day, between May and
          November 2011, on Twitter”


    Batch (Hadoop) approach would require
    processing ~30 billion tweets, or ~4.2
                 TB of data
                  http://blog.twitter.com/2011/03/numbers.html


4
                                                                 Analytics
Okay, so how are we going to
                   do it?

    For each tweet,
    increment a bunch of counters,
    such that answering a query
    is as easy as reading some counters


5
                                          Analytics
Preparing the data
                              12:32:15 I like #trafficlights
Step 1: Get a feed of    12:33:43 Nobody expects...
        the tweets     12:33:49 I ate a #bee; woe is...
                      12:34:04 Man, @acunu rocks!

Step 2: Tokenise the
        tweet

Step 3: Increment counters            [1234, man]   +1
        in time buckets for           [1234, acunu] +1
        each token                    [1234, rock] +1
6
                                                              Analytics
Querying
                            start: [01/05/11, acunu]
Step 1: Do a range query    end:   [30/05/11, acunu]

                                       Key            #Mentions
                              [01/05/11 00:01, acunu]    3
Step 2: Result table          [01/05/11 00:02, acunu]    5
                                        ...              ...


                              90

Step 3: Plot pretty graph     45
                               0
                                   May Jun Jul Aug Sept Oct Nov
7
                                                              Analytics
Instead of this...
                                  Key            #Mentions
                         [01/05/11 00:01, acunu]    3
                         [01/05/11 00:02, acunu]    5
                                   ...              ...




                         We do this
                      Key           00:01       00:02        ...
                [01/05/11, acunu]     3           5          ...
                [02/05/11, acunu]    12           4          ...
                        ...           ...                    ...

    Row key is ‘big’                     Column key is ‘small’
     time bucket                             time bucket
8
                                                                   Analytics
Towards a more
    general solution...
      (Example II)



9
                          Analytics
count
                grouped by ...
                    day
  count
 distinct
(session)
     count       ... geography

avg(duration)
                  ... browser


10
                          Analytics
21:00      all→1345    :00→45      :01→62      :02→87       ...

                         22:00      all→3221    :00→22      :00→19     :02→104       ...
{
     cust_id: user01,      ...                                                       ...

     session_id: 102,      UK        all→228    user01→1   user14→12   user99→7      ...
     geography: UK,
                           US        all→354    user01→4   user04→8    user56→17     ...
     browser: IE,
     time: 22:02,          ...

}                       UK, 22:00   all→1904       ...

                           ∅        all→87314   UK→238     US→354         ...




11
                                                                                 Analytics
21:00      all→1345     :00→45     :01→62      :02→87       ...

                         22:00      all→3222     :00→22     :00→19     :02→105       ...
{
     cust_id: user01,      ...                                                       ...

     session_id: 102,      UK        all→229    user01→2   user14→12   user99→7      ...
     geography: UK,
                           US        all→354    user01→4   user04→8    user56→17     ...
     browser: IE,
     time: 22:02,          ...

}                       UK, 22:00   all→1905       ...

                           ∅        all→87315   UK→239     US→354         ...




12
                                                                                 Analytics
21:00      all→1345    :00→45      :01→62      :02→87       ...

      22:00      all→3221    :00→22      :00→19     :02→104       ...

        ...                                                       ...

        UK        all→228    user01→1   user14→12   user99→7      ...

        US        all→354    user01→4   user04→8    user56→17     ...

        ...

     UK, 22:00   all→1904       ...

        ∅        all→87314   UK→238     US→354         ...




13
                                                              Analytics
where time 21:00-22:00
 count(*)
                          21:00      all→1345    :00→45      :01→62      :02→87       ...

                          22:00      all→3222    :00→22      :01→19     :02→105       ...

                            ...                                                       ...

                            UK        all→229    user01→2   user14→12   user99→7      ...

                            US        all→354    user01→4   user04→8    user56→17     ...

                            ...

                         UK, 22:00   all→1905       ...

                            ∅        all→87315   UK→239     US→354         ...




14
                                                                                  Analytics
where time 21:00-22:00
 count(*)
                           21:00      all→1345    :00→45      :01→62      :02→87       ...


where time 22:00-23:00,    22:00      all→3222    :00→22      :01→19     :02→105       ...


 group by minute             ...                                                       ...

                             UK        all→229    user01→2   user14→12   user99→7      ...

                             US        all→354    user01→4   user04→8    user56→17     ...

                             ...

                          UK, 22:00   all→1905       ...

                             ∅        all→87315   UK→239     US→354         ...




15
                                                                                   Analytics
where time 21:00-22:00
 count(*)
                           21:00      all→1345     :00→45     :01→62      :02→87       ...


where time 22:00-23:00,    22:00      all→3222    :00→22      :01→19     :02→105       ...


 group by minute             ...                                                       ...

                             UK        all→229    user01→2   user14→12   user99→7      ...


where geography=UK           US        all→354    user01→4   user04→8    user56→17     ...


 group all by user,          ...

                          UK, 22:00   all→1905       ...

                             ∅        all→87315   UK→239      US→354        ...




16
                                                                                   Analytics
where time 21:00-22:00
 count(*)
                           21:00      all→1345     :00→45     :01→62      :02→87       ...


where time 22:00-23:00,    22:00      all→3222    :00→22      :01→19     :02→105       ...


 group by minute             ...                                                       ...

                             UK        all→229    user01→2   user14→12   user99→7      ...


where geography=UK           US        all→354    user01→4   user04→8    user56→17     ...


 group all by user,          ...

                          UK, 22:00   all→1905       ...

count all                    ∅        all→87315   UK→239      US→354        ...




17
                                                                                   Analytics
where time 21:00-22:00
 count(*)
                           21:00      all→1345     :00→45     :01→62      :02→87       ...


where time 22:00-23:00,    22:00      all→3222    :00→22      :01→19     :02→105       ...


 group by minute             ...                                                       ...

                             UK        all→229    user01→2   user14→12   user99→7      ...


where geography=UK           US        all→354    user01→4   user04→8    user56→17     ...


 group all by user,          ...

                          UK, 22:00   all→1905       ...

count all                    ∅        all→87315   UK→239      US→354        ...




group all by geo
18
                                                                                   Analytics
What about more than
       just aggregates?



19
                            Analytics
Approximate Analytics
                 Exact




     Real-time           Large Scale


20
                                       Analytics
Count Distinct

     Plan A: keep a list of all the things you’ve seen
               count them at query time


                Quick to update
                  ... but at scale ...
                Takes lots of space
                Takes a long time to query
21
                                                         Analytics
Approximate Distinct

     max # leading zeroes seen so far
         item          hash        leading zeroes   max so far

         x        00101001110...          2            2
         y        11010100111...          0            2
         z        00011101011...          3            3
                       ...
     ... to see a max of M takes about        2M    items

22
                                                                 Analytics
Approximate Distinct

            to reduce var, average over m=2k sub-streams

     item          hash          index, zeroes   max so far

     x       00101001110...          0, 0        0,0,0,0
     y       11010100111...          3, 1        0,0,0,1
     z       00011101011...          0, 1        1,0,0,1
                   ...
            take the harmonic mean
23
                                                              Analytics
Okay... now what?




                    Analytics
Analytics

                                     counter
                                     updates
Click stream    events
                          Acunu
Sensor data
                         Analytics
     etc




     •   Aggregate incrementally, on the fly
     •   Store live + historical aggregates
10x vs MySQL...




                  Analytics
Dashboard UI




27
                    Analytics
“Up and running in about 4 hours”
“We found out a competitor
  was scraping our data”

                      “We keep discovering use cases
                         we hadn’t thought of ”




                                                 Analytics
"Quick, efficient and easy to
        get started"
                       "We're still finding new and
                     interesting use cases, which just
                         aren't possible with our
                           current datastores."

                                                         Analytics
Thanks!

     Questions?


30
                  Analytics
1 of 30

Recommended

Realtime Analytics with Apache Cassandra by
Realtime Analytics with Apache CassandraRealtime Analytics with Apache Cassandra
Realtime Analytics with Apache CassandraAcunu
3.1K views32 slides
Acunu Analytics by
Acunu AnalyticsAcunu Analytics
Acunu AnalyticsAcunu
2K views27 slides
Users & Ad Click Costs By Country April2010 by
Users & Ad Click Costs By Country  April2010Users & Ad Click Costs By Country  April2010
Users & Ad Click Costs By Country April2010Lara Solomon
616 views3 slides
Lista items en minecraft by
Lista items en minecraftLista items en minecraft
Lista items en minecraftYago Maicas
1.8K views75 slides
Imagens, minecraft, royal treasure slides by
Imagens, minecraft, royal treasure slidesImagens, minecraft, royal treasure slides
Imagens, minecraft, royal treasure slidesRoyal-Treasure
462 views63 slides
Solr & Cassandra: Searching Cassandra with DataStax Enterprise by
Solr & Cassandra: Searching Cassandra with DataStax EnterpriseSolr & Cassandra: Searching Cassandra with DataStax Enterprise
Solr & Cassandra: Searching Cassandra with DataStax EnterpriseDataStax Academy
5.4K views36 slides

More Related Content

More from Acunu

Acunu and Hailo: a realtime analytics case study on Cassandra by
Acunu and Hailo: a realtime analytics case study on CassandraAcunu and Hailo: a realtime analytics case study on Cassandra
Acunu and Hailo: a realtime analytics case study on CassandraAcunu
3.4K views25 slides
Virtual nodes: Operational Aspirin by
Virtual nodes: Operational AspirinVirtual nodes: Operational Aspirin
Virtual nodes: Operational AspirinAcunu
2.1K views36 slides
Acunu Analytics and Cassandra at Hailo All Your Base 2013 by
Acunu Analytics and Cassandra at Hailo All Your Base 2013 Acunu Analytics and Cassandra at Hailo All Your Base 2013
Acunu Analytics and Cassandra at Hailo All Your Base 2013 Acunu
2.3K views47 slides
Understanding Cassandra internals to solve real-world problems by
Understanding Cassandra internals to solve real-world problemsUnderstanding Cassandra internals to solve real-world problems
Understanding Cassandra internals to solve real-world problemsAcunu
12.5K views37 slides
Acunu Analytics: Simpler Real-Time Cassandra Apps by
Acunu Analytics: Simpler Real-Time Cassandra AppsAcunu Analytics: Simpler Real-Time Cassandra Apps
Acunu Analytics: Simpler Real-Time Cassandra AppsAcunu
1.8K views33 slides
All Your Base by
All Your BaseAll Your Base
All Your BaseAcunu
716 views50 slides

More from Acunu(20)

Acunu and Hailo: a realtime analytics case study on Cassandra by Acunu
Acunu and Hailo: a realtime analytics case study on CassandraAcunu and Hailo: a realtime analytics case study on Cassandra
Acunu and Hailo: a realtime analytics case study on Cassandra
Acunu3.4K views
Virtual nodes: Operational Aspirin by Acunu
Virtual nodes: Operational AspirinVirtual nodes: Operational Aspirin
Virtual nodes: Operational Aspirin
Acunu2.1K views
Acunu Analytics and Cassandra at Hailo All Your Base 2013 by Acunu
Acunu Analytics and Cassandra at Hailo All Your Base 2013 Acunu Analytics and Cassandra at Hailo All Your Base 2013
Acunu Analytics and Cassandra at Hailo All Your Base 2013
Acunu2.3K views
Understanding Cassandra internals to solve real-world problems by Acunu
Understanding Cassandra internals to solve real-world problemsUnderstanding Cassandra internals to solve real-world problems
Understanding Cassandra internals to solve real-world problems
Acunu12.5K views
Acunu Analytics: Simpler Real-Time Cassandra Apps by Acunu
Acunu Analytics: Simpler Real-Time Cassandra AppsAcunu Analytics: Simpler Real-Time Cassandra Apps
Acunu Analytics: Simpler Real-Time Cassandra Apps
Acunu1.8K views
All Your Base by Acunu
All Your BaseAll Your Base
All Your Base
Acunu716 views
Real-time Cassandra by Acunu
Real-time CassandraReal-time Cassandra
Real-time Cassandra
Acunu7.6K views
Realtime Analytics on the Twitter Firehose with Apache Cassandra - Denormaliz... by Acunu
Realtime Analytics on the Twitter Firehose with Apache Cassandra - Denormaliz...Realtime Analytics on the Twitter Firehose with Apache Cassandra - Denormaliz...
Realtime Analytics on the Twitter Firehose with Apache Cassandra - Denormaliz...
Acunu1.7K views
Realtime Analytics with Cassandra by Acunu
Realtime Analytics with CassandraRealtime Analytics with Cassandra
Realtime Analytics with Cassandra
Acunu1.3K views
Acunu Analytics @ Cassandra London by Acunu
Acunu Analytics @ Cassandra LondonAcunu Analytics @ Cassandra London
Acunu Analytics @ Cassandra London
Acunu571 views
Exploring Big Data value for your business by Acunu
Exploring Big Data value for your businessExploring Big Data value for your business
Exploring Big Data value for your business
Acunu1.4K views
Realtime Analytics on the Twitter Firehose with Cassandra by Acunu
Realtime Analytics on the Twitter Firehose with CassandraRealtime Analytics on the Twitter Firehose with Cassandra
Realtime Analytics on the Twitter Firehose with Cassandra
Acunu1.1K views
Progressive NOSQL: Cassandra by Acunu
Progressive NOSQL: CassandraProgressive NOSQL: Cassandra
Progressive NOSQL: Cassandra
Acunu1K views
Cassandra EU 2012 - Overview of Case Studies and State of the Market by 451 R... by Acunu
Cassandra EU 2012 - Overview of Case Studies and State of the Market by 451 R...Cassandra EU 2012 - Overview of Case Studies and State of the Market by 451 R...
Cassandra EU 2012 - Overview of Case Studies and State of the Market by 451 R...
Acunu1.9K views
Cassandra EU 2012 - Putting the X Factor into Cassandra by Acunu
Cassandra EU 2012 - Putting the X Factor into CassandraCassandra EU 2012 - Putting the X Factor into Cassandra
Cassandra EU 2012 - Putting the X Factor into Cassandra
Acunu862 views
Cassandra EU 2012 - Netflix's Cassandra Architecture and Open Source Efforts by Acunu
Cassandra EU 2012 - Netflix's Cassandra Architecture and Open Source EffortsCassandra EU 2012 - Netflix's Cassandra Architecture and Open Source Efforts
Cassandra EU 2012 - Netflix's Cassandra Architecture and Open Source Efforts
Acunu12.9K views
Next Generation Cassandra by Acunu
Next Generation CassandraNext Generation Cassandra
Next Generation Cassandra
Acunu823 views
Cassandra EU 2012 - CQL: Then, Now and When by Eric Evans by Acunu
Cassandra EU 2012 - CQL: Then, Now and When by Eric Evans Cassandra EU 2012 - CQL: Then, Now and When by Eric Evans
Cassandra EU 2012 - CQL: Then, Now and When by Eric Evans
Acunu1.1K views
Cassandra EU 2012 - Storage Internals by Nicolas Favre-Felix by Acunu
Cassandra EU 2012 - Storage Internals by Nicolas Favre-FelixCassandra EU 2012 - Storage Internals by Nicolas Favre-Felix
Cassandra EU 2012 - Storage Internals by Nicolas Favre-Felix
Acunu3.2K views
Cassandra EU 2012 - Highly Available: The Cassandra Distribution Model by Sam... by Acunu
Cassandra EU 2012 - Highly Available: The Cassandra Distribution Model by Sam...Cassandra EU 2012 - Highly Available: The Cassandra Distribution Model by Sam...
Cassandra EU 2012 - Highly Available: The Cassandra Distribution Model by Sam...
Acunu1.5K views

Recently uploaded

LLMs in Production: Tooling, Process, and Team Structure by
LLMs in Production: Tooling, Process, and Team StructureLLMs in Production: Tooling, Process, and Team Structure
LLMs in Production: Tooling, Process, and Team StructureAggregage
57 views77 slides
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue by
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlueVNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlueShapeBlue
207 views54 slides
"Node.js Development in 2024: trends and tools", Nikita Galkin by
"Node.js Development in 2024: trends and tools", Nikita Galkin "Node.js Development in 2024: trends and tools", Nikita Galkin
"Node.js Development in 2024: trends and tools", Nikita Galkin Fwdays
33 views38 slides
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT by
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITUpdates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITShapeBlue
208 views8 slides
State of the Union - Rohit Yadav - Apache CloudStack by
State of the Union - Rohit Yadav - Apache CloudStackState of the Union - Rohit Yadav - Apache CloudStack
State of the Union - Rohit Yadav - Apache CloudStackShapeBlue
303 views53 slides
Transcript: Redefining the book supply chain: A glimpse into the future - Tec... by
Transcript: Redefining the book supply chain: A glimpse into the future - Tec...Transcript: Redefining the book supply chain: A glimpse into the future - Tec...
Transcript: Redefining the book supply chain: A glimpse into the future - Tec...BookNet Canada
41 views16 slides

Recently uploaded(20)

LLMs in Production: Tooling, Process, and Team Structure by Aggregage
LLMs in Production: Tooling, Process, and Team StructureLLMs in Production: Tooling, Process, and Team Structure
LLMs in Production: Tooling, Process, and Team Structure
Aggregage57 views
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue by ShapeBlue
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlueVNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue
ShapeBlue207 views
"Node.js Development in 2024: trends and tools", Nikita Galkin by Fwdays
"Node.js Development in 2024: trends and tools", Nikita Galkin "Node.js Development in 2024: trends and tools", Nikita Galkin
"Node.js Development in 2024: trends and tools", Nikita Galkin
Fwdays33 views
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT by ShapeBlue
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITUpdates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
ShapeBlue208 views
State of the Union - Rohit Yadav - Apache CloudStack by ShapeBlue
State of the Union - Rohit Yadav - Apache CloudStackState of the Union - Rohit Yadav - Apache CloudStack
State of the Union - Rohit Yadav - Apache CloudStack
ShapeBlue303 views
Transcript: Redefining the book supply chain: A glimpse into the future - Tec... by BookNet Canada
Transcript: Redefining the book supply chain: A glimpse into the future - Tec...Transcript: Redefining the book supply chain: A glimpse into the future - Tec...
Transcript: Redefining the book supply chain: A glimpse into the future - Tec...
BookNet Canada41 views
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... by TrustArc
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc176 views
Business Analyst Series 2023 - Week 4 Session 8 by DianaGray10
Business Analyst Series 2023 -  Week 4 Session 8Business Analyst Series 2023 -  Week 4 Session 8
Business Analyst Series 2023 - Week 4 Session 8
DianaGray10145 views
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ... by ShapeBlue
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
ShapeBlue129 views
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue by ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueCloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
ShapeBlue139 views
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... by ShapeBlue
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
ShapeBlue178 views
Initiating and Advancing Your Strategic GIS Governance Strategy by Safe Software
Initiating and Advancing Your Strategic GIS Governance StrategyInitiating and Advancing Your Strategic GIS Governance Strategy
Initiating and Advancing Your Strategic GIS Governance Strategy
Safe Software184 views
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit... by ShapeBlue
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...
ShapeBlue162 views
Elevating Privacy and Security in CloudStack - Boris Stoyanov - ShapeBlue by ShapeBlue
Elevating Privacy and Security in CloudStack - Boris Stoyanov - ShapeBlueElevating Privacy and Security in CloudStack - Boris Stoyanov - ShapeBlue
Elevating Privacy and Security in CloudStack - Boris Stoyanov - ShapeBlue
ShapeBlue224 views
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online by ShapeBlue
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineKVM Security Groups Under the Hood - Wido den Hollander - Your.Online
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online
ShapeBlue225 views
Future of AR - Facebook Presentation by Rob McCarty
Future of AR - Facebook PresentationFuture of AR - Facebook Presentation
Future of AR - Facebook Presentation
Rob McCarty65 views

Realtime Analytics with Apache Cassandra - JAX London

  • 1. Realtime Analytics with Apache Cassandra Tom Wilkie Founder & CTO, Acunu Ltd @tom_wilkie
  • 2. Combining “big” and “real-time” is hard Live & historical Drill downs Trends... aggregates... and roll ups 2 Analytics
  • 3. Solution Con Scalability $$$ Not realtime Spartan query semantics => complex, DIY solutions 3 Analytics
  • 4. Example I eg “show me the number of mentions of ‘Acunu’ per day, between May and November 2011, on Twitter” Batch (Hadoop) approach would require processing ~30 billion tweets, or ~4.2 TB of data http://blog.twitter.com/2011/03/numbers.html 4 Analytics
  • 5. Okay, so how are we going to do it? For each tweet, increment a bunch of counters, such that answering a query is as easy as reading some counters 5 Analytics
  • 6. Preparing the data 12:32:15 I like #trafficlights Step 1: Get a feed of 12:33:43 Nobody expects... the tweets 12:33:49 I ate a #bee; woe is... 12:34:04 Man, @acunu rocks! Step 2: Tokenise the tweet Step 3: Increment counters [1234, man] +1 in time buckets for [1234, acunu] +1 each token [1234, rock] +1 6 Analytics
  • 7. Querying start: [01/05/11, acunu] Step 1: Do a range query end: [30/05/11, acunu] Key #Mentions [01/05/11 00:01, acunu] 3 Step 2: Result table [01/05/11 00:02, acunu] 5 ... ... 90 Step 3: Plot pretty graph 45 0 May Jun Jul Aug Sept Oct Nov 7 Analytics
  • 8. Instead of this... Key #Mentions [01/05/11 00:01, acunu] 3 [01/05/11 00:02, acunu] 5 ... ... We do this Key 00:01 00:02 ... [01/05/11, acunu] 3 5 ... [02/05/11, acunu] 12 4 ... ... ... ... Row key is ‘big’ Column key is ‘small’ time bucket time bucket 8 Analytics
  • 9. Towards a more general solution... (Example II) 9 Analytics
  • 10. count grouped by ... day count distinct (session) count ... geography avg(duration) ... browser 10 Analytics
  • 11. 21:00 all→1345 :00→45 :01→62 :02→87 ... 22:00 all→3221 :00→22 :00→19 :02→104 ... { cust_id: user01, ... ... session_id: 102, UK all→228 user01→1 user14→12 user99→7 ... geography: UK, US all→354 user01→4 user04→8 user56→17 ... browser: IE, time: 22:02, ... } UK, 22:00 all→1904 ... ∅ all→87314 UK→238 US→354 ... 11 Analytics
  • 12. 21:00 all→1345 :00→45 :01→62 :02→87 ... 22:00 all→3222 :00→22 :00→19 :02→105 ... { cust_id: user01, ... ... session_id: 102, UK all→229 user01→2 user14→12 user99→7 ... geography: UK, US all→354 user01→4 user04→8 user56→17 ... browser: IE, time: 22:02, ... } UK, 22:00 all→1905 ... ∅ all→87315 UK→239 US→354 ... 12 Analytics
  • 13. 21:00 all→1345 :00→45 :01→62 :02→87 ... 22:00 all→3221 :00→22 :00→19 :02→104 ... ... ... UK all→228 user01→1 user14→12 user99→7 ... US all→354 user01→4 user04→8 user56→17 ... ... UK, 22:00 all→1904 ... ∅ all→87314 UK→238 US→354 ... 13 Analytics
  • 14. where time 21:00-22:00 count(*) 21:00 all→1345 :00→45 :01→62 :02→87 ... 22:00 all→3222 :00→22 :01→19 :02→105 ... ... ... UK all→229 user01→2 user14→12 user99→7 ... US all→354 user01→4 user04→8 user56→17 ... ... UK, 22:00 all→1905 ... ∅ all→87315 UK→239 US→354 ... 14 Analytics
  • 15. where time 21:00-22:00 count(*) 21:00 all→1345 :00→45 :01→62 :02→87 ... where time 22:00-23:00, 22:00 all→3222 :00→22 :01→19 :02→105 ... group by minute ... ... UK all→229 user01→2 user14→12 user99→7 ... US all→354 user01→4 user04→8 user56→17 ... ... UK, 22:00 all→1905 ... ∅ all→87315 UK→239 US→354 ... 15 Analytics
  • 16. where time 21:00-22:00 count(*) 21:00 all→1345 :00→45 :01→62 :02→87 ... where time 22:00-23:00, 22:00 all→3222 :00→22 :01→19 :02→105 ... group by minute ... ... UK all→229 user01→2 user14→12 user99→7 ... where geography=UK US all→354 user01→4 user04→8 user56→17 ... group all by user, ... UK, 22:00 all→1905 ... ∅ all→87315 UK→239 US→354 ... 16 Analytics
  • 17. where time 21:00-22:00 count(*) 21:00 all→1345 :00→45 :01→62 :02→87 ... where time 22:00-23:00, 22:00 all→3222 :00→22 :01→19 :02→105 ... group by minute ... ... UK all→229 user01→2 user14→12 user99→7 ... where geography=UK US all→354 user01→4 user04→8 user56→17 ... group all by user, ... UK, 22:00 all→1905 ... count all ∅ all→87315 UK→239 US→354 ... 17 Analytics
  • 18. where time 21:00-22:00 count(*) 21:00 all→1345 :00→45 :01→62 :02→87 ... where time 22:00-23:00, 22:00 all→3222 :00→22 :01→19 :02→105 ... group by minute ... ... UK all→229 user01→2 user14→12 user99→7 ... where geography=UK US all→354 user01→4 user04→8 user56→17 ... group all by user, ... UK, 22:00 all→1905 ... count all ∅ all→87315 UK→239 US→354 ... group all by geo 18 Analytics
  • 19. What about more than just aggregates? 19 Analytics
  • 20. Approximate Analytics Exact Real-time Large Scale 20 Analytics
  • 21. Count Distinct Plan A: keep a list of all the things you’ve seen count them at query time Quick to update ... but at scale ... Takes lots of space Takes a long time to query 21 Analytics
  • 22. Approximate Distinct max # leading zeroes seen so far item hash leading zeroes max so far x 00101001110... 2 2 y 11010100111... 0 2 z 00011101011... 3 3 ... ... to see a max of M takes about 2M items 22 Analytics
  • 23. Approximate Distinct to reduce var, average over m=2k sub-streams item hash index, zeroes max so far x 00101001110... 0, 0 0,0,0,0 y 11010100111... 3, 1 0,0,0,1 z 00011101011... 0, 1 1,0,0,1 ... take the harmonic mean 23 Analytics
  • 24. Okay... now what? Analytics
  • 25. Analytics counter updates Click stream events Acunu Sensor data Analytics etc • Aggregate incrementally, on the fly • Store live + historical aggregates
  • 26. 10x vs MySQL... Analytics
  • 27. Dashboard UI 27 Analytics
  • 28. “Up and running in about 4 hours” “We found out a competitor was scraping our data” “We keep discovering use cases we hadn’t thought of ” Analytics
  • 29. "Quick, efficient and easy to get started" "We're still finding new and interesting use cases, which just aren't possible with our current datastores." Analytics
  • 30. Thanks! Questions? 30 Analytics