SlideShare a Scribd company logo

Ec2013 tutorial-mb variability-final

1 of 205
Download to read offline
Mathieu	
  Acher,	
  Benoit	
  Combemale,	
  Olivier	
  Barais	
  
Model-­‐Based	
  	
  
Variability	
  Management	
  
	
  
2	
  
Research	
  in	
  so6ware	
  
engineering.	
  
-­‐  8	
  faculty	
  members	
  
-­‐  35	
  researchers	
  and	
  
engineers	
  on	
  projects	
  
We’re	
  hiring!	
  	
  
engineers,	
  PhD	
  students,	
  post-­‐docs	
  
Variability	
  /	
  Product	
  lines	
  	
  
Model-­‐driven	
  Engineering	
  
Language	
  Engineering	
  (e.g.,	
  DSLs)	
  
Scala	
  
3	
  
3	
  
European	
  Projects	
  	
  
	
  
Industrial	
  CollaboraCons	
  
	
  
Academics	
  partners	
  
Acknowledgments	
  (la	
  famille)	
  
Marianela	
  Ciolfi	
  Felice	
  	
  
Joao	
  Bosco	
  Ferreira	
  Filho	
  
Guillaume	
  Bécan	
  
Suresh	
  Pilay	
  	
  
Sana	
  Ben	
  Nasr	
  
(MSc/PhD	
  students,	
  	
  
University	
  of	
  Rennes	
  1)	
  
	
  
Prof.	
  Philippe	
  Collet	
  
Prof.	
  Philippe	
  Lahire	
  	
  
(University	
  of	
  Nice	
  Sophia	
  AnWpolis)	
  
	
  
Prof.	
  Robert	
  B.	
  France	
  	
  
(Colorado	
  State	
  University)	
  
	
  
Prof.	
  Patrick	
  Heymans	
  	
  
(University	
  of	
  Namur)	
  
Audience	
  
•  No	
  pre-­‐requisite	
  background!	
  
•  Targeted	
  Audience	
  
•  Academics	
  or	
  pracWWoners	
  	
  
•  Curious	
  guys:	
  e.g.,	
  PhD	
  students	
  or	
  modellers	
  unaware	
  of…	
  	
  
–  Variability	
  and	
  so6ware	
  product	
  lines	
  (SPLs)	
  
–  Variability	
  modelling	
  	
  
–  ConfiguraWon	
  
•  MDE	
  guys:	
  people	
  involved	
  or	
  interested	
  in	
  the	
  development	
  of	
  
model	
  management	
  tools	
  
–  e.g.,	
  model	
  composiWon/decomposiWon	
  
•  SPL	
  guys:	
  advances	
  that	
  want	
  to	
  learn	
  new	
  techniques	
  
5	
  
At	
  the	
  end	
  of	
  the	
  tutorial…	
  
•  You	
  will	
  have	
  an	
  overview	
  of	
  what’s	
  going	
  on	
  in	
  the	
  field	
  of	
  	
  
variability	
  and	
  model-­‐based	
  so6ware	
  product	
  line	
  engineering	
  
•  You	
  will	
  be	
  able	
  to	
  go	
  further	
  with	
  the	
  languages	
  and	
  modelling	
  
techniques	
  
•  so	
  to	
  reuse	
  them	
  in	
  pracWcal	
  or	
  academic	
  contexts	
  	
  
•  SupporWng	
  material:	
  
hbps://github.com/FAMILIAR-­‐project/familiar-­‐documentaWon/blob/
master/presentaWons/EC2013/README.md	
  	
  
•  slides	
  of	
  the	
  tutorial	
  
•  related	
  arWcles,	
  	
  
•  FAMILIAR	
  scripts,	
  
•  CVL	
  models,	
  
•  and	
  packaged	
  tools	
  to	
  interacWvely	
  play	
  with	
  the	
  models	
  during	
  the	
  
tutorial	
  
6	
  
Ad

Recommended

Models2013 tutorial-smart featuremodeling-final
Models2013 tutorial-smart featuremodeling-finalModels2013 tutorial-smart featuremodeling-final
Models2013 tutorial-smart featuremodeling-finalPhilippe Collet
 
Java code coverage with JCov. Implementation details and use cases.
Java code coverage with JCov. Implementation details and use cases.Java code coverage with JCov. Implementation details and use cases.
Java code coverage with JCov. Implementation details and use cases.Alexandre (Shura) Iline
 
[2016/2017] Modern development paradigms
[2016/2017] Modern development paradigms [2016/2017] Modern development paradigms
[2016/2017] Modern development paradigms Ivano Malavolta
 
Modern development paradigms
Modern development paradigmsModern development paradigms
Modern development paradigmsIvano Malavolta
 
Software Patterns
Software PatternsSoftware Patterns
Software Patternskim.mens
 
[2015/2016] Modern development paradigms
[2015/2016] Modern development paradigms[2015/2016] Modern development paradigms
[2015/2016] Modern development paradigmsIvano Malavolta
 
Model Manipulation for End-User Modelers
Model Manipulation for End-User ModelersModel Manipulation for End-User Modelers
Model Manipulation for End-User ModelersVlad Acretoaie
 

More Related Content

Similar to Ec2013 tutorial-mb variability-final

Modeling should be an independent scientific discipline
Modeling should be an independent scientific disciplineModeling should be an independent scientific discipline
Modeling should be an independent scientific disciplineJordi Cabot
 
Design Patterns - General Introduction
Design Patterns - General IntroductionDesign Patterns - General Introduction
Design Patterns - General IntroductionAsma CHERIF
 
SADP PPTs of all modules - Shanthi D.L.pdf
SADP PPTs of all modules - Shanthi D.L.pdfSADP PPTs of all modules - Shanthi D.L.pdf
SADP PPTs of all modules - Shanthi D.L.pdfB.T.L.I.T
 
Scilab Challenge@NTU 2014/2015 Project Briefing
Scilab Challenge@NTU 2014/2015 Project BriefingScilab Challenge@NTU 2014/2015 Project Briefing
Scilab Challenge@NTU 2014/2015 Project BriefingTBSS Group
 
Software architecture styles families_research_gssi_nov2013
Software architecture styles families_research_gssi_nov2013Software architecture styles families_research_gssi_nov2013
Software architecture styles families_research_gssi_nov2013Henry Muccini
 
Mdeforge slides
Mdeforge slidesMdeforge slides
Mdeforge slidesJuri Rocco
 
On Modeling and Testing When Unpredictability Becomes the Pattern (April 2nd,...
On Modeling and Testing When Unpredictability Becomes the Pattern (April 2nd,...On Modeling and Testing When Unpredictability Becomes the Pattern (April 2nd,...
On Modeling and Testing When Unpredictability Becomes the Pattern (April 2nd,...Benoit Combemale
 
Automated Translation among EPSILON Languages for Performance-Driven UML Sof...
Automated Translation among EPSILON Languages for Performance-Driven  UML Sof...Automated Translation among EPSILON Languages for Performance-Driven  UML Sof...
Automated Translation among EPSILON Languages for Performance-Driven UML Sof...Daniele Di Pompeo
 
The road ahead for architectural languages [ACVI 2016]
The road ahead for architectural languages [ACVI 2016]The road ahead for architectural languages [ACVI 2016]
The road ahead for architectural languages [ACVI 2016]Ivano Malavolta
 
Object-Oriented Application Frameworks
Object-Oriented Application FrameworksObject-Oriented Application Frameworks
Object-Oriented Application Frameworkskim.mens
 
Software variability management - 2017
Software variability management - 2017Software variability management - 2017
Software variability management - 2017XavierDevroey
 
Confessions of an Interdisciplinary Researcher: The Case of High Performance ...
Confessions of an Interdisciplinary Researcher: The Case of High Performance ...Confessions of an Interdisciplinary Researcher: The Case of High Performance ...
Confessions of an Interdisciplinary Researcher: The Case of High Performance ...tiberiusp
 
Effective Detection of Model Changes
Effective Detection of Model ChangesEffective Detection of Model Changes
Effective Detection of Model ChangesDavid Méndez-Acuña
 
Software Engineering- Crisis and Process Models
Software Engineering- Crisis and Process ModelsSoftware Engineering- Crisis and Process Models
Software Engineering- Crisis and Process ModelsNishu Rastogi
 
A Framework for Model-Driven Evolution in Families of Software Architectures
A Framework for Model-Driven Evolution in Families of Software ArchitecturesA Framework for Model-Driven Evolution in Families of Software Architectures
A Framework for Model-Driven Evolution in Families of Software ArchitecturesPooyan Jamshidi
 
Talk at the Joint SSaaPP/FATBIT 2012 Workshop
Talk at the Joint SSaaPP/FATBIT 2012 WorkshopTalk at the Joint SSaaPP/FATBIT 2012 Workshop
Talk at the Joint SSaaPP/FATBIT 2012 WorkshopJácome Cunha
 
Research Questions for Validation and Verification in the Context of Model-Ba...
Research Questions for Validation and Verification in the Context of Model-Ba...Research Questions for Validation and Verification in the Context of Model-Ba...
Research Questions for Validation and Verification in the Context of Model-Ba...Michalis Famelis
 
Online TechTalk  "Patterns in Embedded SW Design"
Online TechTalk  "Patterns in Embedded SW Design"Online TechTalk  "Patterns in Embedded SW Design"
Online TechTalk  "Patterns in Embedded SW Design"GlobalLogic Ukraine
 
Promise and Challenge of Runtime Presentation(summary)
Promise and Challenge of Runtime Presentation(summary)Promise and Challenge of Runtime Presentation(summary)
Promise and Challenge of Runtime Presentation(summary)Joon ho Park
 

Similar to Ec2013 tutorial-mb variability-final (20)

Modeling should be an independent scientific discipline
Modeling should be an independent scientific disciplineModeling should be an independent scientific discipline
Modeling should be an independent scientific discipline
 
Design Patterns - General Introduction
Design Patterns - General IntroductionDesign Patterns - General Introduction
Design Patterns - General Introduction
 
SADP PPTs of all modules - Shanthi D.L.pdf
SADP PPTs of all modules - Shanthi D.L.pdfSADP PPTs of all modules - Shanthi D.L.pdf
SADP PPTs of all modules - Shanthi D.L.pdf
 
Scilab Challenge@NTU 2014/2015 Project Briefing
Scilab Challenge@NTU 2014/2015 Project BriefingScilab Challenge@NTU 2014/2015 Project Briefing
Scilab Challenge@NTU 2014/2015 Project Briefing
 
Software architecture styles families_research_gssi_nov2013
Software architecture styles families_research_gssi_nov2013Software architecture styles families_research_gssi_nov2013
Software architecture styles families_research_gssi_nov2013
 
Mdeforge slides
Mdeforge slidesMdeforge slides
Mdeforge slides
 
On Modeling and Testing When Unpredictability Becomes the Pattern (April 2nd,...
On Modeling and Testing When Unpredictability Becomes the Pattern (April 2nd,...On Modeling and Testing When Unpredictability Becomes the Pattern (April 2nd,...
On Modeling and Testing When Unpredictability Becomes the Pattern (April 2nd,...
 
Automated Translation among EPSILON Languages for Performance-Driven UML Sof...
Automated Translation among EPSILON Languages for Performance-Driven  UML Sof...Automated Translation among EPSILON Languages for Performance-Driven  UML Sof...
Automated Translation among EPSILON Languages for Performance-Driven UML Sof...
 
CSMR06b.ppt
CSMR06b.pptCSMR06b.ppt
CSMR06b.ppt
 
The road ahead for architectural languages [ACVI 2016]
The road ahead for architectural languages [ACVI 2016]The road ahead for architectural languages [ACVI 2016]
The road ahead for architectural languages [ACVI 2016]
 
Object-Oriented Application Frameworks
Object-Oriented Application FrameworksObject-Oriented Application Frameworks
Object-Oriented Application Frameworks
 
Software variability management - 2017
Software variability management - 2017Software variability management - 2017
Software variability management - 2017
 
Confessions of an Interdisciplinary Researcher: The Case of High Performance ...
Confessions of an Interdisciplinary Researcher: The Case of High Performance ...Confessions of an Interdisciplinary Researcher: The Case of High Performance ...
Confessions of an Interdisciplinary Researcher: The Case of High Performance ...
 
Effective Detection of Model Changes
Effective Detection of Model ChangesEffective Detection of Model Changes
Effective Detection of Model Changes
 
Software Engineering- Crisis and Process Models
Software Engineering- Crisis and Process ModelsSoftware Engineering- Crisis and Process Models
Software Engineering- Crisis and Process Models
 
A Framework for Model-Driven Evolution in Families of Software Architectures
A Framework for Model-Driven Evolution in Families of Software ArchitecturesA Framework for Model-Driven Evolution in Families of Software Architectures
A Framework for Model-Driven Evolution in Families of Software Architectures
 
Talk at the Joint SSaaPP/FATBIT 2012 Workshop
Talk at the Joint SSaaPP/FATBIT 2012 WorkshopTalk at the Joint SSaaPP/FATBIT 2012 Workshop
Talk at the Joint SSaaPP/FATBIT 2012 Workshop
 
Research Questions for Validation and Verification in the Context of Model-Ba...
Research Questions for Validation and Verification in the Context of Model-Ba...Research Questions for Validation and Verification in the Context of Model-Ba...
Research Questions for Validation and Verification in the Context of Model-Ba...
 
Online TechTalk  "Patterns in Embedded SW Design"
Online TechTalk  "Patterns in Embedded SW Design"Online TechTalk  "Patterns in Embedded SW Design"
Online TechTalk  "Patterns in Embedded SW Design"
 
Promise and Challenge of Runtime Presentation(summary)
Promise and Challenge of Runtime Presentation(summary)Promise and Challenge of Runtime Presentation(summary)
Promise and Challenge of Runtime Presentation(summary)
 

More from University of Rennes, INSA Rennes, Inria/IRISA, CNRS

More from University of Rennes, INSA Rennes, Inria/IRISA, CNRS (20)

A Demonstration of End-User Code Customization Using Generative AI
A Demonstration of End-User Code Customization Using Generative AIA Demonstration of End-User Code Customization Using Generative AI
A Demonstration of End-User Code Customization Using Generative AI
 
Generative AI for Reengineering Variants into Software Product Lines: An Expe...
Generative AI for Reengineering Variants into Software Product Lines: An Expe...Generative AI for Reengineering Variants into Software Product Lines: An Expe...
Generative AI for Reengineering Variants into Software Product Lines: An Expe...
 
Tackling Deep Software Variability Together
Tackling Deep Software Variability TogetherTackling Deep Software Variability Together
Tackling Deep Software Variability Together
 
On anti-cheating in chess, science, reproducibility, and variability
On anti-cheating in chess, science, reproducibility, and variabilityOn anti-cheating in chess, science, reproducibility, and variability
On anti-cheating in chess, science, reproducibility, and variability
 
Feature Subset Selection for Learning Huge Configuration Spaces: The case of ...
Feature Subset Selection for Learning Huge Configuration Spaces: The case of ...Feature Subset Selection for Learning Huge Configuration Spaces: The case of ...
Feature Subset Selection for Learning Huge Configuration Spaces: The case of ...
 
Machine Learning and Deep Software Variability
Machine Learning and Deep Software VariabilityMachine Learning and Deep Software Variability
Machine Learning and Deep Software Variability
 
Mastering Software Variability for Innovation and Science
Mastering Software Variability for Innovation and ScienceMastering Software Variability for Innovation and Science
Mastering Software Variability for Innovation and Science
 
Transfer Learning Across Variants and Versions: The Case of Linux Kernel Size
Transfer Learning Across Variants and Versions: The Case of Linux Kernel SizeTransfer Learning Across Variants and Versions: The Case of Linux Kernel Size
Transfer Learning Across Variants and Versions: The Case of Linux Kernel Size
 
Reproducible Science and Deep Software Variability
Reproducible Science and Deep Software VariabilityReproducible Science and Deep Software Variability
Reproducible Science and Deep Software Variability
 
Software Variability and Artificial Intelligence
Software Variability and Artificial IntelligenceSoftware Variability and Artificial Intelligence
Software Variability and Artificial Intelligence
 
Teaching Software Product Lines: A Snapshot of Current Practices and Challenges
Teaching Software Product Lines: A Snapshot of Current Practices and ChallengesTeaching Software Product Lines: A Snapshot of Current Practices and Challenges
Teaching Software Product Lines: A Snapshot of Current Practices and Challenges
 
Exploiting the Enumeration of All Feature Model Configurations: A New Perspec...
Exploiting the Enumeration of All Feature Model Configurations: A New Perspec...Exploiting the Enumeration of All Feature Model Configurations: A New Perspec...
Exploiting the Enumeration of All Feature Model Configurations: A New Perspec...
 
Assessing Product Line Derivation Operators Applied to Java Source Code: An E...
Assessing Product Line Derivation Operators Applied to Java Source Code: An E...Assessing Product Line Derivation Operators Applied to Java Source Code: An E...
Assessing Product Line Derivation Operators Applied to Java Source Code: An E...
 
Synthesis of Attributed Feature Models From Product Descriptions
Synthesis of Attributed Feature Models From Product DescriptionsSynthesis of Attributed Feature Models From Product Descriptions
Synthesis of Attributed Feature Models From Product Descriptions
 
From Basic Variability Models to OpenCompare.org
From Basic Variability Models to OpenCompare.orgFrom Basic Variability Models to OpenCompare.org
From Basic Variability Models to OpenCompare.org
 
Pandoc: a universal document converter
Pandoc: a universal document converterPandoc: a universal document converter
Pandoc: a universal document converter
 
Metamorphic Domain-Specific Languages
Metamorphic Domain-Specific LanguagesMetamorphic Domain-Specific Languages
Metamorphic Domain-Specific Languages
 
3D Printing, Customization, and Product Lines
3D Printing, Customization, and Product Lines3D Printing, Customization, and Product Lines
3D Printing, Customization, and Product Lines
 
WebFML: Synthesizing Feature Models Everywhere (@ SPLC 2014)
WebFML: Synthesizing Feature Models Everywhere (@ SPLC 2014)WebFML: Synthesizing Feature Models Everywhere (@ SPLC 2014)
WebFML: Synthesizing Feature Models Everywhere (@ SPLC 2014)
 
A survey on teaching of software product lines
A survey on teaching of software product linesA survey on teaching of software product lines
A survey on teaching of software product lines
 

Recently uploaded

"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys VasylievFwdays
 
My sample product research idea for you!
My sample product research idea for you!My sample product research idea for you!
My sample product research idea for you!KivenRaySarsaba
 
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...DianaGray10
 
Bringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptxBringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptxMaarten Balliauw
 
Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?MENGSAYLOEM1
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...UiPathCommunity
 
"How we created an SRE team in Temabit as a part of FOZZY Group in conditions...
"How we created an SRE team in Temabit as a part of FOZZY Group in conditions..."How we created an SRE team in Temabit as a part of FOZZY Group in conditions...
"How we created an SRE team in Temabit as a part of FOZZY Group in conditions...Fwdays
 
"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura RochniakFwdays
 
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxLeveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxVotarikari Shravan
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERNRonnelBaroc
 
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Product School
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfSafe Software
 
Bit N Build Poland
Bit N Build PolandBit N Build Poland
Bit N Build PolandGDSC PJATK
 
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre..."Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...shaiyuvasv
 
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Umar Saif
 
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsFrom Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsInflectra
 
AI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementAI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementMimmo Squillace
 
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17Ana-Maria Mihalceanu
 
Automate Your Master Data Processes for Shared Service Center Excellence
Automate Your Master Data Processes for Shared Service Center ExcellenceAutomate Your Master Data Processes for Shared Service Center Excellence
Automate Your Master Data Processes for Shared Service Center ExcellencePrecisely
 
Power of 2024 - WITforce Odyssey.pptx.pdf
Power of 2024 - WITforce Odyssey.pptx.pdfPower of 2024 - WITforce Odyssey.pptx.pdf
Power of 2024 - WITforce Odyssey.pptx.pdfkatalinjordans1
 

Recently uploaded (20)

"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev
 
My sample product research idea for you!
My sample product research idea for you!My sample product research idea for you!
My sample product research idea for you!
 
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
 
Bringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptxBringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptx
 
Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
 
"How we created an SRE team in Temabit as a part of FOZZY Group in conditions...
"How we created an SRE team in Temabit as a part of FOZZY Group in conditions..."How we created an SRE team in Temabit as a part of FOZZY Group in conditions...
"How we created an SRE team in Temabit as a part of FOZZY Group in conditions...
 
"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak
 
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxLeveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
 
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
 
Bit N Build Poland
Bit N Build PolandBit N Build Poland
Bit N Build Poland
 
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre..."Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
 
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
 
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsFrom Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
 
AI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementAI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvement
 
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17
 
Automate Your Master Data Processes for Shared Service Center Excellence
Automate Your Master Data Processes for Shared Service Center ExcellenceAutomate Your Master Data Processes for Shared Service Center Excellence
Automate Your Master Data Processes for Shared Service Center Excellence
 
Power of 2024 - WITforce Odyssey.pptx.pdf
Power of 2024 - WITforce Odyssey.pptx.pdfPower of 2024 - WITforce Odyssey.pptx.pdf
Power of 2024 - WITforce Odyssey.pptx.pdf
 

Ec2013 tutorial-mb variability-final

  • 1. Mathieu  Acher,  Benoit  Combemale,  Olivier  Barais   Model-­‐Based     Variability  Management    
  • 2. 2   Research  in  so6ware   engineering.   -­‐  8  faculty  members   -­‐  35  researchers  and   engineers  on  projects  
  • 3. We’re  hiring!     engineers,  PhD  students,  post-­‐docs   Variability  /  Product  lines     Model-­‐driven  Engineering   Language  Engineering  (e.g.,  DSLs)   Scala   3   3   European  Projects       Industrial  CollaboraCons     Academics  partners  
  • 4. Acknowledgments  (la  famille)   Marianela  Ciolfi  Felice     Joao  Bosco  Ferreira  Filho   Guillaume  Bécan   Suresh  Pilay     Sana  Ben  Nasr   (MSc/PhD  students,     University  of  Rennes  1)     Prof.  Philippe  Collet   Prof.  Philippe  Lahire     (University  of  Nice  Sophia  AnWpolis)     Prof.  Robert  B.  France     (Colorado  State  University)     Prof.  Patrick  Heymans     (University  of  Namur)  
  • 5. Audience   •  No  pre-­‐requisite  background!   •  Targeted  Audience   •  Academics  or  pracWWoners     •  Curious  guys:  e.g.,  PhD  students  or  modellers  unaware  of…     –  Variability  and  so6ware  product  lines  (SPLs)   –  Variability  modelling     –  ConfiguraWon   •  MDE  guys:  people  involved  or  interested  in  the  development  of   model  management  tools   –  e.g.,  model  composiWon/decomposiWon   •  SPL  guys:  advances  that  want  to  learn  new  techniques   5  
  • 6. At  the  end  of  the  tutorial…   •  You  will  have  an  overview  of  what’s  going  on  in  the  field  of     variability  and  model-­‐based  so6ware  product  line  engineering   •  You  will  be  able  to  go  further  with  the  languages  and  modelling   techniques   •  so  to  reuse  them  in  pracWcal  or  academic  contexts     •  SupporWng  material:   hbps://github.com/FAMILIAR-­‐project/familiar-­‐documentaWon/blob/ master/presentaWons/EC2013/README.md     •  slides  of  the  tutorial   •  related  arWcles,     •  FAMILIAR  scripts,   •  CVL  models,   •  and  packaged  tools  to  interacWvely  play  with  the  models  during  the   tutorial   6  
  • 7. Differences  with  previous  tutorials  at   SPLC’12  /  MODELS’12   •  Larger  perspecWve/moWvaWon   •  Including  modelling/language/architectural  examples     •  Not  only  about  feature  models   •  not  only  about  FAMILIAR   •  but  new  techniques  for  reverse  engineering  (VaMoS’13)  and  composing   (MODELS’13)  feature  models  will  be  presented     •  Model-­‐based  product  line  engineering   •  Common  Variability  Language  (CVL)   FAMILIAR  is  now  a  project    not  only  a  language  for  managing  feature  models!   7  
  • 8. [MOTIVATION/PROBLEM]  Why  modeling  and  managing  Variability   does  and  will  maber  (30’)   [SOLUTION  FOR  MANAGING  FEATURE  MODELS]  Managing  Variability   Models  with  FAMILIAR  (1h45’)       [SOLUTION  FOR  MODEL-­‐BASED  DERIVATION  OF  PRODUCT]  Model-­‐based   variability  engineering:  examples,  support  and  open  issues   (45’)   8   Plan  
  • 9. [MOTIVATION/PROBLEM]  Why  modeling  and  managing  Variability   does  and  will  maber  (30’)   [SOLUTION  FOR  MANAGING  FEATURE  MODELS]  Managing  Variability   Models  with  FAMILIAR  (1h45’)       [SOLUTION  FOR  MODEL-­‐BASED  DERIVATION  OF  PRODUCT]  Model-­‐based   variability  engineering:  examples,  support  and  open  issues   (45’)   9   Plan  
  • 10. 10   So6ware-­‐intensive  systems   come  in  many  variants    
  • 11. 11  
  • 15. Features  in  MicrosoS  Office   15  
  • 17. 17  
  • 18. Variability     “the  ability  of  a  system  to  be  efficiently  extended,   changed,  customized  or  configured  for  use  in  a   parCcular  context”     Mikael  Svahnberg,  Jilles  van  Gurp,  and  Jan  Bosch  (2005)  
  • 19. «  A  set  of  programs  is  considered  to  consWtute   a  family,  whenever  it  is  worthwhile  to  study   programs  from  the  set  by  first  studying  the   common  properCes  of  the  set  and  then   determining  the  special  properCes  of  the   individual  family  members  »             David  L.  Parnas  —  ‘‘On  the  design  and  development  of  program   families’’  in  TransacCons  on  SoSware  Engineering,  SE-­‐2(1):1–9,  1976    19   aka  Variability  
  • 20. Variability     “the  ability  of  a  system  to  be  efficiently   extended,  changed,  customized  or   configured  for  use  in  a  parCcular  context”     Mikael  Svahnberg,  Jilles  van  Gurp,  and  Jan  Bosch  (2005)       20  
  • 21. 21  21   Extensible  architectures   (eg  plugins-­‐based)   ConfiguraCon   files   System   Preferences   Configurators   Source  code   Build   systems   Comparison  of  *   Structural  or  behavorial     models   External  Variability   Internal  Variability   Variability  @  run.Cme  
  • 22. 22   «  Feature  Model  ExtracWon  from  Large  CollecWons  of  Informal  Product  DescripWons  »     Jean-­‐Marc  Davril,  Edouard  Delfosse,  Negar  Hariri,  Mathieu  Acher,  Jane  Cleland-­‐Huang,  Patrick   Heymans  (ESEC/FSE’13)  
  • 23. 23   «  The  Anatomy  of  a  Sales  Configurator:  An  Empirical  Study  of  111  Cases  »  Ebrahim  Khalil  Abbasi,   Arnaud  Hubaux,  Mathieu  Acher,  QuenWn  Boucher,  and  Patrick  Heymans  (CAiSE’13)  
  • 24. 24   «  ExtracWon  and  EvoluWon  of  Architectural  Variability  Models  in  Plugin-­‐based  Systems  »       Mathieu  Acher,  Anthony  Cleve,  Philippe  Collet,  Philippe  Merle,  Laurence  Duchien,  Philippe   Lahire  ECSA/SoSyM’13  
  • 25. If  you’re  able  to  master  variability…   •  Reduce  development  costs     •  Reduce  cerWficaWon  costs     •  Shorten  Wme-­‐to-­‐market     •  But,  are  you  able?     – developing,  verifying,  cerWfying  billions  of  variants  is   challenging!     25  
  • 26. Variability = Complexity ChrisWan  Kästner  slide  
  • 27. a  unique  variant  for  every   person  on  this  planet   33  features   opWonal,  independent   ChrisWan  Kästner  slide  
  • 28. 320  features     more  variants  than  esWmated      atoms  in  the  universe   opWonal,  independent  
  • 29. 2000  features   10000   features   ChrisWan  Kästner  slide  
  • 30. 30       Avoid  solving  the  same  problem!        2,  3…n  Cmes     AutomaCon?  
  • 33.     Goal:  So6ware  mass  customizaWon     /  AdapWve  and  configurable  systems     Problem:  Variability  =  Complexity     Approach:  Model-­‐based  variability  management   33   Why  managing  Variability     does  (and  will)  maier  
  • 34. 34   So6ware-­‐intensive  systems   come  in  many  variants     Model-­‐based     Variability  Management  
  • 35.   Modeling  Variability     CommunicaCve     AnalyCc     GeneraCve     35  
  • 36. 36  
  • 38. 38   Factoring  out  commonaliCes    for  Reuse  [Krueger  et  al.,  1992]  [Jacobson  et  al.,  1997]               Managing  variabiliCes      for  So6ware  Mass  CustomizaCon  [Bass  et  al.,  1998]  [Krueger  et  al.,  2001],  [Pohl  et  al.,  2005]      
  • 39. Mobile 3G+ 3G GPS Maps Camera ü   ü   ü   Mobile 3G+ 3G GPS Maps Camera Domain/Variability  Model   ConfiguraCon   SoSware  Generator   Domain  Artefacts       Domain     Engineering   ApplicaCon     Engineering   «  the  investments  required  to  develop  the  reusable  arBfacts  during   domain  engineering,  are  outweighed  by  the  benefits  of  deriving  the   individual  products  during  applica.on  engineering  »   Jan  Bosch  et  al.  (2004)      
  • 40. 40   99%  domain  engineering,     1%  applicaCon  engineering?   –  specifies  what  you  want  (click,  click,  click)  a  customized   product  is  automaWcally  built  for  you   –  Iterate  the  process  for  n  products   Amount of effort Application Engineering More Sophisticated Technology Domain Engineering
  • 41. Variability  AbstracCon   Model  (VAM)   ConfiguraCon   (resoluCon  model)   Domain  Artefacts   (e.g.,  models)   SoSware  Generator   (derivaCon  engine)   ü   ü   Variability   RealizaCon   Model   (VRM)  
  • 42. 42  
  • 44. (another  research  area/applicaWon:   adapWve  systems  aka  dynamic  so6ware  product  lines   Models@run.Wme)   hip://www.kevoree.org   from  Cloud  stack  to   embedded  devices  
  • 46. Variability  Handling  in  AUTOSAR   Body   control   Low-­‐end  light-­‐ control   AdapWve-­‐curve   light-­‐control   Feature  Modeling   (Variability  abstracWon)   Generic  Template   (Variability  RealizaWon)   LightType   …   System   constant   Low  End   High  End   Car   1..1 Feature   v.  4.04  (upcoming)   v.  4.03   Low  End  ==  1   High  End  ==  1   VariaWon   point   Adapted  from  the  CVL  tutorial  at  SPLC’12  by  Oystein  Haugen,  Andrezj  Wasowski,  Krzysztof  Czarnecki    
  • 47. Variability  Handling  in  AUTOSAR  (2)   Feature  Modeling   (Variability  abstracWon)   Generic  Template   (Variability  RealizaWon)   Low  End   High  End   Car   1..1 Body   control   Low-­‐end   light-­‐control  
  • 48. VariaCon  Point  Types   •  Variability  is  applied  to  different  parts  of  the   metamodel   – AggregaWon,  associaWon,  abribute  value,  property   set   •  ResulWng  variability   – OpWonal  component   – OpWonal  port   – OpWonal  connector   – Parameter  variability   Component   Port   Adapted  from  the  CVL  tutorial  at  SPLC’12  by  Oystein  Haugen,  Andrezj  Wasowski,  Krzysztof  Czarnecki    
  • 49. 49   «  Mapping  Features  to  Models:  A  Template  Approach  Based  on  Superimposed  Variants»   Krzysztof  Czarnecki  and  Michal  Antkiewicz  GPCE’05  
  • 50. 50   «  Mapping  Features  to  Models:  A  Template  Approach  Based  on  Superimposed  Variants»   Krzysztof  Czarnecki  and  Michal  Antkiewicz  GPCE’05  
  • 51. 51   «  Mapping  Features  to  Models:  A  Template  Approach  Based  on  Superimposed  Variants»   Krzysztof  Czarnecki  and  Michal  Antkiewicz  GPCE’05  
  • 52. 52   «  Mapping  Features  to  Models:  A  Template  Approach  Based  on  Superimposed  Variants»   Krzysztof  Czarnecki  and  Michal  Antkiewicz  GPCE’05  
  • 53. Safe  composiWon?  No!   53   «Verifying  Feature-­‐Based  Model  Templates  Against   Well-­‐Formedness  OCL  Constraints  »  Krzysztof  Czarnecki  Krzysztof  Pietroszek  GPCE’06  
  • 54. Ooops   54   «Verifying  Feature-­‐Based  Model  Templates  Against   Well-­‐Formedness  OCL  Constraints  »  Krzysztof  Czarnecki  Krzysztof  Pietroszek  GPCE’06  
  • 55. Another  approach   55   «  Reconciling  AutomaWon  and  Flexibility  in  Product  DerivaWon  »  Gilles  Perrouin,  Jacques  Klein,   Nicolas  Guelfi,  Jean-­‐Marc  Jézéquel  SPLC’08  
  • 56. 56   «  Reconciling  AutomaWon  and  Flexibility  in  Product  DerivaWon  »  Gilles  Perrouin,  Jacques  Klein,   Nicolas  Guelfi,  Jean-­‐Marc  Jézéquel  SPLC’08   Merging-­‐based  DerivaCon  of  Product  
  • 58. Variability  at  the  language  level     58 Variability  in   Metamodeling   •  SemanWc  variaWon  point   •  DSML  Families   •  Knowledge  capitalizaWon   •  Language  Engineering     Variability  in   Modeling   Variability Variability
  • 59.                Engineering  SemanCcs  in  Modeling  Languages   59 Abstract Syntax (AS) Concrete Syntax (CS) Semantics Domain (SD) Mac Mas •  Variability  in  metamodeling  (DSML  families,  variaWon  point...):   –  Abstract  syntax:  staWc  introducWon  (AOM),  inheritance  (OOP)   –  Concrete  syntax:  view  point  (OBEO  Designer)   –  SemanWcs:  sWll  a  problem!  how  to  define  and  manage  semanBc   variability  (in  the  DSML  and  the  associated  tools)?  
  • 60. DSL4   DSL3  DSL2   DSL1   Language  Family   (expresiveness,  semanWc  variaWon  point,     implementaWon  variaWon  point,  viewpoints,  tooling,  etc.)   RM   dsl1   RM   dsl2   RM   dsl3  RM   dsl4   Challenge1:  Modular   Language  Design   Challenge3:   Language   ComposiWon   Challenge2:   Variability  Modeling   «  Variability  Management  in  Modeling  Languages  »  Suresh  Pilay  PhD  thesis  (ongoing)  
  • 61. DSL   Variability   model   CVL   Base     model   Generic  &     Standardized   resoluCon   models   Focused  on     a  domain   Execute  CVL       Resolved     models   DescripWon  of   possible   variaWons  in   the  system   Domain   model  of  a   parWcular   family  of   system   SelecWon  of  a  set   of  opWons  in  the   variaWon  model   Family  of  systems  fully   described  in  the   domain  specific   language.   All  regular  DSL  tools   can  be  applied  to  these   models   61   RealizaCon   model   Language Units Language Features how to realize the features Configuration of languages Derivation Process Languages «  Variability  Management  Modeling  Languages  »  Suresh  Pilay  PhD  thesis  (ongoing)  
  • 63. 63   «  ExtracWon  and  EvoluWon  of  Architectural  Variability  Models  in  Plugin-­‐based  Systems  »       Mathieu  Acher,  Anthony  Cleve,  Philippe  Collet,  Philippe  Merle,  Laurence  Duchien,  Philippe   Lahire  ECSA/SoSyM’13  
  • 64. 64   «  ExtracWon  and  EvoluWon  of  Architectural  Variability  Models  in  Plugin-­‐based  Systems  »       Mathieu  Acher,  Anthony  Cleve,  Philippe  Collet,  Philippe  Merle,  Laurence  Duchien,  Philippe   Lahire  ECSA/SoSyM’13   FraSCAti SCAParser Java Compiler JDK6 JDT Optional Mandatory Alternative- Group Or-Group Assembly Factory resthttp Binding MMFrascati Component Factory Metamodel MMTuscany constraints rest requires MMFrascati http requires MMTuscany FM1 Variability  Model  
  • 65. 65   Variability  Model   FraSCAti SCAParser Java Compiler JDK6 JDT Optional Mandatory Alternative- Group Or-Group Assembly Factory resthttp Binding MMFrascati Component Factory Metamodel MMTuscany constraints rest requires MMFrascati http requires MMTuscany FM1 FraSCAC  Architecture   Set  of    Safe   Variants   authorized  by   FraSCAC   Scope  is   too  large  
  • 66. Illegal    Variant     66  
  • 67. 67   FraSCAC  Architecture   FraSCAti SCAParser Java Compiler JDK6 JDT Optional Mandatory Alternative- Group Or-Group Assembly Factory resthttp Binding MMFrascati Component Factory Metamodel MMTuscany constraints rest requires MMFrascati http requires MMTuscany FM1 Feature  Model   FraSCAti SCAParser Java Compiler JDK6 JDT Optional Mandatory Alternative- Group Or-Group Assembly Factory resthttp Binding MMFrascati Component Factory Metamodel MMTuscany constraints rest requires MMFrascati http requires MMTuscany FM1 ConfiguraCon   Derived  FraSCAC  Architecture  
  • 68. [MOTIVATION/PROBLEM]  Why  modeling  and  managing  Variability   does  and  will  maber  (30’)   [SOLUTION  FOR  MANAGING  FEATURE  MODELS]  Managing  Variability   Models  with  FAMILIAR  (1h45’)       [SOLUTION  FOR  MODEL-­‐BASED  DERIVATION  OF  PRODUCT]  Model-­‐based   variability  engineering:  examples,  support  and  open  issues   (45’)   68   Plan  
  • 69. Variability  Model   ConfiguraCon   Domain  Artefacts  (e.g.,  source  code)   SoSware  Generator   Modeling   variability     is  crucial   ü   ü  
  • 72. 72  72   Extensible  architectures   (plugins-­‐based)   ConfiguraCon   files   System   Preferences   Configurators   Source  code   Build  systems   Comparison  of  Product  
  • 73.   Variability  AbstracCon  Model   (VAM)     CommunicaCve     AnalyCc     GeneraCve     73   not, and, or, implies
  • 74. Variability  Model   Feature  Model:  de  facto  standard   •  Research     –  2500+  citaWons  of  [Kang  et  al.,  1990]  on  Google  Scholar     –  Central  to  many  generaWve  approaches   •  at  requirements  or  code  level   –  Tools  &  Languages  (GUIDSL/FeatureIDE,  SPLOT,  FaMa,   etc.)   •  Industry     –  Tools  (Gears,  pure::variants),     •  Common  Variability  Language  (CVL)   74  
  • 77. Feature  Models  (Background)   77   Hierarchy:  rooted  tree     Variability:     •  mandatory,     •  opWonal,     •  Groups:  exclusive  or  inclusive  features   •  Cross-­‐tree  constraints   Optional Mandatory Xor-Group Or-Group
  • 78. 78   Hierarchy  +  Variability     =     set  of  valid  configuraCons   {CarEquipment,  Comfort,  DrivingAndSafety,  Healthing,  AirCondiWoning,  FrontFogLights}   configuraCon  =  set  of  features  selected   Optional Mandatory Xor-Group Or-Group
  • 79. 79   Hierarchy  +  Variability     =     set  of  valid  configuraCons   {CarEquipment,  Comfort,  DrivingAndSafety,  Healthing,  AirCondiWoning}   configuraCon  =  set  of  features  selected   Optional Mandatory Xor-Group Or-Group
  • 80. 80   Hierarchy  +  Variability     =     set  of  valid  configuraCons   Optional Mandatory Xor-Group Or-Group {CarEquipment,  Comfort,  DrivingAndSafety,  Healthing,  AirCondiWoning,   AutomaWcHeadLights}   configuraCon  =  set  of  features  selected   ü   ü   ü   ü   ü   ü  
  • 81. 81   Hierarchy  +  Variability     =     set  of  valid  configuraCons   Optional Mandatory Xor-Group Or-Group {AirCondiWoning,  FrontFogLights}   {AutomaWcHeadLights,  AirCondiWoning,  FrontFogLights}   {AutomaWcHeadLights,  FrontFogLights,  AirCondiWoningFrontAndRear}   {AirCondiWoningFrontAndRear}   {AirCondiWoning}   {AirCondiWoningFrontAndRear,  FrontFogLights}   {CarEquipment,  Comfort,   DrivingAndSafety,   Healthing}   X
  • 84.  (FeAture  Model  scrIpt  Language  for  manIpulaWon  and  AutomaWc  Reasoning)     not, and, or, implies φTVL DIMACS hip://familiar-­‐project.github.com/   Mathieu  Acher,  Philippe  Collet,  Philippe  Lahire,  Robert  B.  France  «  A  Domain-­‐Specific  Language  for  Large-­‐ Scale  Management  of  Feature  Models  »  Science  of  Computer  Programming  (SCP),  2013  
  • 87. 87   Optional Mandatory Xor-Group Or-Group {AirCondiWoning,  FrontFogLights}   {AutomaWcHeadLights,  AirCondiWoning,   FrontFogLights}   {AutomaWcHeadLights,  FrontFogLights,   AirCondiWoningFrontAndRear}   {AirCondiWoningFrontAndRear}   {AirCondiWoning}   {AirCondiWoningFrontAndRear,  FrontFogLights}   {CarEquipment,  Comfort,   DrivingAndSafety,   Healthing}   X
  • 88. 88  
  • 90.  (FeAture  Model  scrIpt  Language  for  manIpulaWon  and  AutomaWc  Reasoning)     imporCng,  exporCng,  composing,  decomposing,  ediCng,  configuring,   reverse  engineering,  compuCng  "diffs",  refactoring,  tesCng,     and  reasoning  about  (mulCple)  variability  models   not, and, or, implies φTVL DIMACS hip://familiar-­‐project.github.com/   Mathieu  Acher,  Philippe  Collet,  Philippe  Lahire,  Robert  B.  France  «  A  Domain-­‐Specific  Language  for  Large-­‐ Scale  Management  of  Feature  Models  »  Science  of  Computer  Programming  (SCP),  2013  
  • 92. #2  MulCple  Feature  Models   92  
  • 93. 93  93   MulC-­‐*  variability           *systems,  perspecCves,  or  stakeholders  
  • 94. •  #1  Automated  analysis     –  Aka  support  to  beber  understand  and  play  with  your  feature   model  (TVL  model)   •  #2  Managing  mulCple  feature  models   –  Composing  /  Decomposing  /  Diff  and  Reasoning  about  their   relaWonships   –  Combining  these  operators   94   Two  Key  Requirements  
  • 95. language  and  environment                 And-Group Optional Mandatory Xor-Group Or-Group constraints …….. DirectX V10 V10.1 v11 Outputs VIVO DVI HDMI S-Video Composite VGA GraphicCard And-Group Optional Mandatory Xor-Group Or-Group TV output constraints VGA excludes TV output HDMI implies v10.1 or v11 constraints …….. constraints …….. constraints …….. //  foo.fml   fm1  =  FM  (“foo1.tvl”)   fm2  =  FM  (“foo2.m”)   fm3  =  merge  intersecCon  {  fm1  fm2  }   c3  =  counCng  fm3   renameFeature  fm3.TV  as  “OutputTV”   fm5  =  aggregate  {  fm3  FM  (“foo4.xml”)  }   assert  (isValid  fm5)       fm6  =  slice  fm5  including  fm5.TV.*     export  fm6     True/False   8759   “OutputTV”,  “TV”     Interoperability   Language  faciliCes   Environment  
  • 96. 96   Interoperability   fm1  =  FM(“foo.tvl”)   fm2  =  FM  (“foo.m”)     serialize  fm4  into  SPLOT   serialize  fm1  into  featureide  fm3  =  FM  (“foo.xmi”)   fm4  =  FM  (A  :  B  ….)        De/ComposiCon   merge                        diff                        intersecWon                        sunion       aggregate    map    unmap   extract                                                      slicing   EdiCng   renameFeature    removeFeature   accessors      copy                 Reasoning     counWng   configs   isValid   deads  cores   falseOpWonals   cleanup   configuraWon      select    deselect    asFM  compare   setOpWonal                          setMandatory   setAlternaWves      setOr      Language  FaciliCes   fm1.*   fm1.B   modular  mechanisms       restricted  set  of  types   iterator/condiWonal   asserWon   insert   features  
  • 97. Hello  World   97   helloworld.fml   Optional Mandatory Xor-Group Or-Group
  • 98. Typed  language     •  Domain-­‐specific  types   –  Feature  Model,     –  ConfiguraWon,     –  Feature,     –  Constraint     •  Other  types  include     –  Set   –  String     –  Boolean,     –  Enum,     –  Integer  and  Real.     •  A  set  of  operaWons,  called  operators,  are  defined  for  a  given  type.     98   basics2.fml  
  • 99. Typed  language     99   basics2.fml  
  • 100. Typed  language     100   basics2.fml   Optional Mandatory Xor-Group Or-Group
  • 101. ImporCng/ExporCng  feature  models   101   FAMILIAR S2T2 TVL feature-model-synthesis (visual configurator) (language) (language)FaMa Internal  notaWon  or  by  “filename  extensions”     basics3.fml  
  • 102. Feature  Accessors  (1)   102   6Accessors.fml   Optional Mandatory Xor-Group Or-Group
  • 103. Other  constructs   103   6Accessors2.fml   Optional Mandatory Xor-Group Or-Group
  • 104. ConfiguraCon   104   conf.fml   Optional Mandatory Xor-Group Or-Group
  • 105. 105   φ FM A  ^   A  ó  B  ^     C  =>  A  ^   D  =>  A     Optional Mandatory Xor-Group Or-Group
  • 106. OperaCons  for  Feature  Models  (1)   106   φ operatorsFM.fml   Optional Mandatory Xor-Group Or-Group
  • 107. OperaCons  for  Feature  Models  (2)   107   φ operatorsFM2.fml   Optional Mandatory Xor-Group Or-Group
  • 108. OperaCons  for  Feature  Models  (3)   108   operatorsFM3.fml   Optional Mandatory Xor-Group Or-Group
  • 109.                                                                                 SoC  support  =  ComposiCon/DecomposiCon   for  managing   large,  complex  and  mulCple   feature  models   FORM  1998,  Tun  et  al.  2009  (SPLC),  Hartmann  2008  (SPLC),  Lee  et  al.  2010,  Czarnecki  2005,  Reiser  et  al.  2007  (RE  journal),  Hartmann   et  al.  2009  (SPLC),  Thuem  et  al.  2009  (ICSE),  Classen  et  al.  2009  (SPLC),  Mendonca  et  al.  2010  (SCP),  Dunghana  et  al.  2010,  Hubaux  et   al.  2011  (SoSyM),  Zaid  et  al.  2010  (ER),  She  et  al.,  2011  (ICSE),  etc.  
  • 110. Composing  Feature  Models  (1)   110   aggregateBasics.fml   Optional Mandatory Xor-Group Or-Group
  • 111. Composing  Feature  Models  (2)   111   aggregate1.fml   Previous   version   Optional Mandatory Xor-Group Or-Group
  • 112. Composing  Feature  Models  (3)   112   mergeMI.fml   Mathieu  Acher,  Philippe  Collet,  Philippe  Lahire,  Robert  B.  France  «  Comparing  Approaches  for   ImplemenWng  Feature  Model  ComposiWon  »  ECMFA’10  
  • 113. see  also  Thuem,  Kastner  and  Batory,  ICSE’09   Comparing  Feature  Models   113   compare.fml   Optional Mandatory Xor-Group Or-Group
  • 115. Merge  IntersecCon:  Available  Suppliers   115   ∩   ∩   A  customer   has  some   requirements   Suppliers?   Products?  
  • 116. In  FAMILIAR   116   suppliersExample0.fml  
  • 117. Merge  Union:  Availability  Checking   117   Can  suppliers  provide  all  products?   Yes!   “compare”         ∩   Optional Mandatory Xor-Group Or-Group
  • 118. In  FAMILIAR   118   suppliersExample.fml  
  • 119. Merging  operaCon:    implementaCon  issues   119   How  to  synthesise  a  feature  model  that  represents   the  union  of  input  sets  of  configuraCons?   Optional Mandatory Xor-Group Or-Group T2 MRI Medical Image HeaderAnonymized T1 DICOM Header excludes DICOM Header implies Anonymized Anonymized v Header v ~DICOM v ~T1 v ~T2 Anonymized v Header v DICOM v ~T1 v ~T2
  • 120. 120   Merging  operaCon:  semanCc  issues  (2)   φ Union   IntersecWon     Diff     How  to  synthesise  a  feature  model  that  represents   the  union  of  input  sets  of  configuraCons?  
  • 121. Merging  operaCon:  algorithm   121   φ1 φ2 φ3 φ123 merged  proposiWonal  formula   T2 MRI Medical Image HeaderAnonymized T1 DICOM merged  hierarchy   +   Set  mandatory  features   Detect  Xor  and  Or-­‐groups   Compute  “implies/excludes”   constraints   How  to  synthesise  a  feature   model  that  represents  the   union  of  input  sets  of   configuraCons?   see  also  [Czarnecki  SPLC’07  or  SPLC’12]   Optional Mandatory Xor-Group Or-Group
  • 122. Merging  operaCon:  back  to  hierarchy   122   mergeNonPC.fml   >  configs  fm4   res12:  (SET)  {{C;A};{A;B};{A};{A;B;C}}   ?  Mathieu  Acher,  Benoit  Combemale,  Philippe  Collet,  Olivier  Barais,  Philippe  Lahire,  Robert  B.   France  «  Composing  your  ComposiWons  of  Variability  Models  »  MODELS’13   Optional Mandatory Xor-Group Or-Group
  • 123. see  also  [Acher  et  al.,  ECMFA’10  /  MODELS’13]   – Well-­‐defined  semanWcs   – Guarantee  semanWcs  properWes  by  construcWon   – More  compact  feature  models  than  reference-­‐based   techniques  [Schobbens  et  al.,  2007],  [Hartmann  et  al.,  2007]   •  Easier  to  understand   •  Easier  to  analyze  (e.g.,  compare  with  another)   – Applicable  to  any  proposiWonal  feature  models     •  Full  support  of  proposiWonal  constraints     •  Different  hierarchies  [Van  Den  Broek  et  al.,  SPLC’2010/2012]   – SyntacWcal  strategies  fail  [Alves  et  al.,  2006],  [Segura  et  al.,  2007]   123   Related  Works  
  • 125. 125   Problem:  mulCple  „car  models“    
  • 126. 126   Problem:  mulCple  „car  models“    
  • 127. 127   Problem:  mulCple  „car  models“    
  • 128. 128   Problem:  mulCple  „car  models“       #2  –  boiom-­‐up:  elaborate  a  feature  model  for  each  model  line  and  merge  them   Two  modeling  approaches   #1  –  top-­‐down:  specify  constraints  (e.g.,  excludes)  of  all  model  lines  upfront    
  • 130. 130   #1  boiom-­‐up   FM_1   FM_2   FM_3   FM_r  merge  
  • 131. 131   #1  boiom-­‐up  (FAMILIAR)   FM_1   FM_2   FM_3   FM_r  merge   audiMerge.fml  
  • 133. 133   Building  “views”  of  a  feature  model  
  • 134. •  Problem:  given  a  feature  model,  how  to   decompose  it  into  smaller  feature  models?   •  SemanWcs?   – What’s  the  hierarchy   – What’s  the  set  of  configuraWons?   134   Building  “views”  of  a  feature  model  
  • 135. A  first  try   A3 => P1 P2 => A5 R A2 A5 A6 A1 A3 A4 A fm0 P3P2P1 P P1 => P2 A2 A5 A6 A1 A3 A4 A fmExtraction1 A2 A5 A6 A1 A3 A4 A fmExtraction2 A3 => A5 A4 => A6 Problem:  You  can  select  A3  without  A5   Hierarchy  and  ConfiguraCon  maier!   135  
  • 136. Slicing  Operator   W constraints E implies D R implies E D excludes F S implies (F and not E) P R S fm1 AV T U B C D E F Optional Mandatory Xor-Group Or-Group T S E D constraints E implies D D implies E slicing  criterion  :  an  arbitrary  set  of  features,  relevant  for  a  feature  model  user   slice  :  a  new  feature  model,  represenWng  a  projected  set  of  configuraWons     136  
  • 137. Slicing  operator:  going  into  details   projected  set  of  configuraCons   137   fm1  =  {     {A,B,C,D,E,P,R,T,U,W},     {A,B,C,F,P,S,T,U,W},     {A,B,C,D,E,P,R,T,W},     {A,B,C,F,P,S,T,V,W},     {A,B,C,F,P,S,T,U,V,W},     {A,B,C,F,P,S,T,W},     {A,B,C,D,E,P,R,T,V,W},     }   fm1  =  {     {A,B,C,D,E,P,R,T,U,W},     {A,B,C,F,P,S,T,U,W},     {A,B,C,D,E,P,R,T,W},     {A,B,C,F,P,S,T,V,W},     {A,B,C,F,P,S,T,U,V,W},     {A,B,C,F,P,S,T,W},     {A,B,C,D,E,P,R,T,V,W},     }   fm1p  =  {     {D,E,T},     {S,T},     {D,E,T},     {S,T},     {S,T},     {S,T},     {D,E,T}   }   fm1p  =  {     {D,E,T},     {S,T},     }   W constraints E implies D R implies E D excludes F S implies (F andnot E) P R S fm1 AV T U B C D E F Optional Mandatory Xor-Group Or-Group
  • 138. +   T S E D constraints E implies D D implies E φs1 existenBal   quanBficaBon   of  features   not  included   in  the  slicing   criterion   138   fm1p  =  {     {D,E,T},     {S,T}   }   Slicing  operator:  going  into  details   synthesizing  the  corresponding  feature  model   S   E   D   T   W constraints E implies D R implies E D excludes F S implies (F andnot E) P R S fm1 AV T U B C D E F φ1 Mathieu  Acher,  Philippe  Collet,  Philippe  Lahire,  Robert  B.  France  «  SeparaWon  of  Concerns  in   Feature  Modeling:  Support  and  ApplicaWons  »  AOSD’12   Optional Mandatory Xor-Group Or-Group
  • 139. T S E D constraints E implies D D implies E 139   Slicing  operator  with  FAMILIAR  (1)   W constraints E implies D R implies E D excludes F S implies (F andnot E) P R S fm1 AV T U B C D E F slicingOp2.fml   Optional Mandatory Xor-Group Or-Group
  • 140. 140   Slicing  with  FAMILIAR  (2)   slicingOp.fml  
  • 141. From  marke.ng,   customers,  product   management     From  exis.ng  so@ware   assets    (technical  variability)   Metzger,  Heymans  et  al.  “DisambiguaBng  the  DocumentaBon  of  Variability  in  Sofware  Product   Lines:  A  SeparaBon  of  Concerns,  FormalizaBon  and  Automated  Analysis“  (RE’07)  
  • 142. V1 ⬄ f1 V2 ⬄ f2 V3 ⬄ f3 From  marke.ng,   customers,  product   management     From  exis.ng   so@ware  assets     realizability   usefulness   Optional Mandatory Xor-Group Or-Group
  • 143. Realizability  checking   aggregate   {{V1,V3,V2,VP1},   {V1,VP1},   {V3,VP1},     {VP1}}     merge  diff   (“unrealizable  products”   φ 1 slice  (“realizable  part”)   2 3 compare   4   Mathieu  Acher,  Philippe  Collet,  Philippe  Lahire,  Robert  B.  France  «  SeparaWon  of  Concerns  in   Feature  Modeling:  Support  and  ApplicaWons  »  AOSD’12     Optional Mandatory Xor-Group Or-Group
  • 144. With  FAMILIAR   144   realizibility.fml  
  • 146. 146   RevisiCng  Merge:     Aggregate  +  Slice   Optional Mandatory Xor-Group Or-Group
  • 147. 147   RevisiCng  Aggregate,     Merge  and  Slice:       mergeWithAggregateMI.fml   Mathieu  Acher,  Benoit  Combemale,  Philippe  Collet,  Olivier  Barais,  Philippe  Lahire,  Robert  B.   France  «  Composing  your  ComposiWons  of  Variability  Models  »  MODELS’13   Optional Mandatory Xor-Group Or-Group
  • 148. 148   Mathieu  Acher,  Benoit  Combemale,  Philippe  Collet,  Olivier  Barais,  Philippe  Lahire,  Robert  B.   France  «  Composing  your  ComposiWons  of  Variability  Models  »  MODELS’13  
  • 149. 149   φ FM             Feature  Model  Synthesis  Problem   [Czarnecki  et  al.,  SPLC’07]   [She  et  al.,  ICSE’11]   [Andersen  et  al.,  SPLC’12]   A  ^   A  ó  B  ^     C  =>  A  ^   D  =>  A    
  • 150. φ               « How to synthesise an accurate (w.r.t. the set of constraints/configurations) meaningful (maintainable by a user), and unique feature model? »  hip://familiar-­‐project.github.com/  
  • 151. φ(SAT solvers or Binary Decision Diagrams) The  knowledge  can  be:       inconsistent  (e.g.,  root  feature  specified  is  not  possible)   consistent  and  incomplete  (i.e.,  synthesis  algorithm  needs   addiWonal  informaWon)   consistent,  «  parCal  »  (e.g.,  not  all  the  hierarchy  is  specified)  and   actually  complete     Mathieu  Acher,  Patrick  Heymans,  Anthony  Cleve,  Jean-­‐Luc  Hainaut,  Benoit  Baudry  «  Support  for   Reverse  Engineering  and  Maintaining  Feature  Models  »  VaMoS’13  
  • 152. #1  Reverse  Engineering  Scenarios   •  [Haslinger  et  al.,  WCRE’11],  [Acher  et  al.,  VaMoS’12]   φ V DAd OT M KAe CP R S C requires T Ae requires T S equals M V DAd OT KAe SP R M C requires T S equals M C 0..1
  • 153. #2  Refactoring   •  [Alves  et  al.,  GPCE’06],  [Thuem  et  al.,  ICSE’09]   φ V DAd OT M KAe CP R S C requires T Ae requires T S equals M
  • 154. #3  Re-­‐Engineering  Feature  Models  of           repository   •  For  each  FM  we  execute  the  following  FAMILIAR  script…     •  …  And  we  «compare»  syntacWcally  fm1  and  fm2   •  semanWcal  comparison  is  not  needed:  we  know  that  they  are  refactoring  by   construcWon  (good  test  case  though  ;-­‐))   •  Results:   –  147  synthesised  FMs  (69  %)  were  exactly  the  same  as  input  FMs  ;     –  40  synthesised  FMs  (19%)  were  correcWons  of  input  FMs  ;     –  24  synthesised  FMs  (12%)  were  different  (knowledge  needed)   •  another  set  of  cross-­‐tree  constraints  was  synthesised.     •  feature  group  conflicts  in  six  cases   SpecificaCon  of  the  hierarchy  is  the  main  issue   φ
  • 155. φ             FAMILIAR   « Give me a formula and some knowledge, I will synthesise an accurate, meaningful, unique feature model »  #1  Breathing  knowledge  into  feature  model  synthesis    formal  specificaWon  (consistency  and  completeness)    concrete  syntax  and  tooling  suport   #2  PracCcal  applicaCons    reverse  engineering,  refactoring/re-­‐engineering  of  feature  models       hip://familiar-­‐project.github.com/   Automated  support  is  highly   needed  (ongoing  work)  
  • 156. [MOTIVATION/PROBLEM]  Why  modeling  and  managing  Variability   does  and  will  maber  (30’)   [SOLUTION  FOR  MANAGING  FEATURE  MODELS]  Managing  Variability   Models  with  FAMILIAR  (1h45’)       [SOLUTION  FOR  MODEL-­‐BASED  DERIVATION  OF  PRODUCT]  Model-­‐based   variability  engineering:  examples,  support  and  open  issues   (45’)   156   Plan  
  • 157. Variability  AbstracCon   Model  (VAM)   ConfiguraCon   (resoluCon  model)   Domain  Artefacts   (e.g.,  models)   SoSware  Generator   (derivaCon  engine)   ü   ü   Variability   RealizaCon   Model   (VRM)  
  • 159. Printer ´Blockª mainSupply:MainPower1 Attributes Operations powerCtrl emgSupply:EmgPower1 Attributes threshold:int Operations powerCtrl inputSection1 highSpeedConnector1 Attributes Operations MainPowerCtrl EmgPowerCtrl MainPower ´Blockª Values Operations powerCtrl EmgPower ´Blockª Values threshold:int powerCtrl VariaCon  Points  over  base  model   :ObjectExistence   :SlotValueAssignment   CVL variation points SYSML (base model) elements :ObjectExistence   :ObjectExistence   §  Variability  in  this  example:     Part  EmergencySupply  is   opWonal     Part  HighSpeedConnector  is   opWonal     Port  EmgPowerCtrl  on  block   Printer  is  opWonal     Value  of  abribute  threshold  in   block  EmergencyPower  is   variable   Adapted  from  the  CVL  tutorial  at  SPLC’12  by  Oystein  Haugen,  Andrezj  Wasowski,  Krzysztof   Czarnecki    
  • 160. Printer ´Blockª mainSupply:MainPower1 Attributes Operations powerCtrl emgSupply:EmgPower1 Attributes threshold:int Operations powerCtrl inputSection1 highSpeedConnector1 Attributes Operations MainPowerCtrl EmgPowerCtrl MainPower ´Blockª Values Operations powerCtrl EmgPower ´Blockª Values threshold:int powerCtrl (Aiributed)   Feature  Model     Printer   EmergencyPower   threshold:Int   Variation points HighSpeed  &    threshold>100      EmergencyPower   HighSpeed   :ObjectExistence   :SlotValueAssignment  :ObjectExistence   :ObjectExistence   Based  Model     Adapted  from  the  CVL  tutorial  at  SPLC’12  by  Oystein  Haugen,  Andrezj  Wasowski,  Krzysztof   Czarnecki    
  • 161. Variability  RealizaCon  Layer   VariaCon  points  in  CVL   •  VariaWon  Points  refer  to  Base  objects   •  VariaWon  Points  define  the  base  model   modificaWons  precisely   •  There  are  different  kinds  of  VariaWon  Points   – Existence  (object  or  link)   – Value  assignment   – SubsWtuWon   – Opaque  variaWon  point   – Configurable  Unit   Adapted  from  the  CVL  tutorial  at  SPLC’12  by  Oystein  Haugen,  Andrezj  Wasowski,  Krzysztof   Czarnecki    
  • 162. Derivation of Traffic Lights Models Joao  Bosco  Ferreira   Filho  (PhD  student)  
  • 164. . Traffic Lights' behaviour can be modelled using Finite State Machines Traffic Lights FSM
  • 165. Traffic Lights FSM OBJECTIVE: Produce the finite state machine associated with each traffic light configuration . Simplification: - Green Light - Red Light - Yellow Light
  • 166. Base model . Define the DSL: 1. Create an Ecore modelling project 2. Define the metamodel 3. Generate the model, the edit and the editor code 4. Export them as plugins
  • 168. Base model . Create the base model: 1. Create a Modelling project 2. Create a new model in the DSL
  • 169. Base model . Create the base model: 1. Create a Modelling project 2. Create a new model in the DSL
  • 170. CVL model . Create the CVL model: 1. Create a new CVL model in the modelling project. Select VPackage as the Model object 2. Right click on the project, select Viewpoints selection. Check the three of them 3. Define the VAM, Resolution model and VRM
  • 171. VAM
  • 174. VRM
  • 175. VRM
  • 178. Visualisation of products in a web configurator Marianela Ciolfi Felice (MSc student)  
  • 180. Marks  &  Spencer  web  configurator  
  • 181. §  High visual quality §  Coherence and stability §  Interactiveness §  Performance §  Automatic and comprehensive update method Marianela Ciolfi Felice and Joao Bosco Ferreira Filho and Mathieu Acher and Arnaud Blouin and Olivier Barais « Interactive Visualisation of Products in Online Configurators: A Case Study for Variability Modelling Technologies » MAPLESCALE’13 (to appear)
  • 182. Anticipating all possible combinations §  10 configuration options §  10 possible values for each of them 10.000.000.000 combinations! Composing the visualisation
  • 183. PRODUCT CONFIGURATION VISUAL REPRESENTATION Models   HTML   jpg,  png,  ...,  files   SVG  files   Javascript   3D   models   Feature   models  
  • 185. . Simplification: - Fabric - Collar - Pocket (optional) - Handkerchief (optional)     Shirts web configurator
  • 186. Shirts web configurator OBJECTIVE: Produce the visual representation associated with each shirt configuration . Simplification: - Fabric - Collar - Pocket (optional) - Handkerchief (optional)    
  • 187. Feature model - Implicit boolean attribute existence - No constraints
  • 188. Base model . Define the DSL: 1. Create an Ecore modelling project 2. Define the metamodel 3. Generate the model, the edit and the editor code 4. Export them as a plugin
  • 190. Base model . Create the base model: 1. Create a Modelling project 2. Create a new model in the DSL
  • 191. Base model . Create the base model: 1. Create a Modelling project 2. Create a new model in the DSL
  • 192. CVL model . Create the CVL model: 1. Create a new CVL model in the modelling project. Select VPackage as the Model object 2. Right click on the project. Select Viewpoints selection. Check the three of them 3. Define the VAM, Resolution model and VRM
  • 193. VAM
  • 194. VAM
  • 195. VAM Suggestion: Set the choices' default resolution to: - True for mandatory features - False for optional features
  • 198. VRM
  • 199. VRM
  • 202. Summary:  Variability  Model  Management   202  202  202  
  • 203. [MOTIVATION/PROBLEM]  Why  modeling  and  managing  Variability   does  and  will  maber  (30’)   [SOLUTION  FOR  MANAGING  FEATURE  MODELS]  Managing  Variability   Models  with  FAMILIAR  (1h45’)       [SOLUTION  FOR  MODEL-­‐BASED  DERIVATION  OF  PRODUCT]  Model-­‐based   variability  engineering:  examples,  support  and  open  issues   (45’)   203   Key  Insights  
  • 204. (ongoing)  Comprehensive  model-­‐based   product  line  support     Reverse  engineering   Automated  Analysis   Languages,  API/DSLs   EvaluaCon  (European  projects,  long-­‐term  collaboraCon  with  Thales,  open  source   systems)     204   204  
  • 205.                     ?   205