-
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This webinar originally aired on Tuesday, October 9th, 2012. It is part of Data Blueprint's ongoing webinar series on data management with Dr. Aiken.
Sign up for future sessions at http://www.datablueprint.com/webinar-schedule.
Abstract:
This presentation provides guidance to organizations considering or preparing for data quality initiatives. We will illustrate how organizations with chronic business challenges often can trace the root of the problem to poor data quality. Showing how data quality can be engineered provides a useful framework in which to develop an organizational approach. This in turn will allow organizations to more quickly identify data problems caused by structural issues versus practice-oriented defects. Participants will also learn the importance of practicing data quality engineering quantification.
Be the first to like this
Be the first to comment