Formas canonicas

20,086 views

Published on

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
20,086
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
118
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Formas canonicas

  1. 1. REPRESENTACIÓN DE FUNCIONES BOOLEANAS. Un sistema digital combinacional puede ser representado mediante una función booleana, y las salidas generadas por tal sistema pueden ser obtenidas creando la tabla de verdad de la función booleana. Sin embargo, en la práctica, resulta más común que se construya la tabla de verdad de todas las combinaciones posibles de las entradas del sistema y las salidas que se desea obtener en cada caso y a partir de esto generar la función booleana expresada en maxitérminos o minitérminos.
  2. 2. Formas Canónicas A partir de una tabla de verdad es posible obtener múltiples expresiones para la misma función, y todas estas expresiones son equivalentes entre ellas x y z S 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1
  3. 3. Primera Forma Canónica La primera forma canónica está formada por la suma de productos (minitérminos) y se desarrolla tomando la tabla de verdad y eligiendo las combinaciones de entradas en las que la salida se hace 1 y descartando las que son igual a 0. x y z S 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 S = x’y’z + x’yz + xy’z’ + xy’z + xyz S(x,y,z)= ¦ (1,3,4,5,7)
  4. 4. Segunda Forma Canónica La segunda forma canónica está formada por el producto de sumas (maxitérminos) y se desarrolla tomando la tabla de verdad y eligiendo las combinaciones de entradas en las que la salida se hace 0 y descartando las que son igual a 1. x y z S 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 S = (x + y +z) (x + y’ +z) (x’ + y’ +z) S(x,y,z)= 3 (0,2,6)

×