We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Machine Learning ist eine Art von Software-Entwicklung, bei der man nicht direkt Code schreibt, sondern ein Modell anhand von Daten trainiert. Das kann in Situationen von Vorteil sein, in denen man keinen passenden Code schreiben kann oder dieser extrem komplex werden würde. TensorFlow ist das bekannteste Framework im Bereich Neuronaler Netzwerke mit dem man solche Modell erzeugen und nutzen kann. TensorFlow.js (https://js.tensorflow.org/api/latest/) implementiert die volle API von TensorFlow mit JavaScript und erlaubt sowohl die Ausführung, als auch das Training von Neuronalen Netzwerken auf jeder GPU.
Im ersten Teil des Workshops werden wir ein Modell zur Bilderkennung in einer grafischen Webanwendung trainieren und in einer eigenen Anwendung zum Laufen bringen. Hier geht es um die Grundlagen von Machine Learning und den Teil der TensorFlow.js API zum Ausführen eines Modells.
Im zweiten Teil werden wir ein eigenes Modell mit der TensorFlow.js API trainieren und als Teil einer JS-Anwendung integrieren.
Es sind keine Vorkenntnisse nötig und zur Teilnahme wird lediglich eine beliebige IDE zur Entwicklung von JavaScript benötigt.
Machine Learning ist eine Art von Software-Entwicklung, bei der man nicht direkt Code schreibt, sondern ein Modell anhand von Daten trainiert. Das kann in Situationen von Vorteil sein, in denen man keinen passenden Code schreiben kann oder dieser extrem komplex werden würde. TensorFlow ist das bekannteste Framework im Bereich Neuronaler Netzwerke mit dem man solche Modell erzeugen und nutzen kann. TensorFlow.js (https://js.tensorflow.org/api/latest/) implementiert die volle API von TensorFlow mit JavaScript und erlaubt sowohl die Ausführung, als auch das Training von Neuronalen Netzwerken auf jeder GPU.
Im ersten Teil des Workshops werden wir ein Modell zur Bilderkennung in einer grafischen Webanwendung trainieren und in einer eigenen Anwendung zum Laufen bringen. Hier geht es um die Grundlagen von Machine Learning und den Teil der TensorFlow.js API zum Ausführen eines Modells.
Im zweiten Teil werden wir ein eigenes Modell mit der TensorFlow.js API trainieren und als Teil einer JS-Anwendung integrieren.
Es sind keine Vorkenntnisse nötig und zur Teilnahme wird lediglich eine beliebige IDE zur Entwicklung von JavaScript benötigt.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!