Chap011 decision making_editing


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Chap011 decision making_editing

  1. 1. Part 5 Staffing Activities: Employment Chapter 11: Decision Making Chapter 12: Final Match McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
  2. 2. Part 5 Staffing Activities: Employment Chapter 11: Decision Making 11-
  3. 3. Staffing Organizations Model Staffing Policies and Programs Staffing System and Retention Management Support Activities Legal compliance Planning Job analysis Core Staffing Activities Recruitment: External, internal Selection: Measurement, external, internal Employment: Decision making, final match 11- Organization Strategy HR and Staffing Strategy Organization Mission Goals and Objectives
  4. 4. Chapter Outline <ul><li>Choice of Assessment Method </li></ul><ul><ul><li>Validity Coefficient </li></ul></ul><ul><ul><li>Face Validity </li></ul></ul><ul><ul><li>Correlation with Other Predictors </li></ul></ul><ul><ul><li>Adverse Impact </li></ul></ul><ul><ul><li>Utility </li></ul></ul><ul><li>Determining Assessment Scores </li></ul><ul><ul><li>Single Predictor </li></ul></ul><ul><ul><li>Multiple Predictors </li></ul></ul><ul><li>Hiring Standards and Cut Scores </li></ul><ul><ul><li>Description of Process </li></ul></ul><ul><ul><li>Consequences of Cut Scores </li></ul></ul><ul><ul><li>Methods to Determine Cut Scores </li></ul></ul><ul><ul><li>Professional Guidelines </li></ul></ul><ul><li>Methods of Final Choice </li></ul><ul><ul><li>Random Selection </li></ul></ul><ul><ul><li>Ranking </li></ul></ul><ul><ul><li>Grouping </li></ul></ul><ul><ul><li>Ongoing Hiring </li></ul></ul><ul><li>Decision Makers </li></ul><ul><ul><li>HR Professionals </li></ul></ul><ul><ul><li>Managers </li></ul></ul><ul><ul><li>Employees </li></ul></ul><ul><li>Legal Issues </li></ul><ul><ul><li>Uniform Guidelines on Employee Selection Procedures </li></ul></ul><ul><ul><li>Diversity and Hiring Decisions </li></ul></ul>11-
  5. 5. Learning Objectives for This Chapter <ul><li>Be able to interpret validity coefficients </li></ul><ul><li>Estimate adverse impact and utility of selection systems </li></ul><ul><li>Learn about methods for combining multiple predictors </li></ul><ul><li>Establish hiring standards and cut scores </li></ul><ul><li>Evaluate various methods of making a final selection choice </li></ul><ul><li>Understand the roles of various decision makers in the staffing process </li></ul><ul><li>Recognize the importance of diversity concerns in the staffing process </li></ul>11-
  6. 6. Choice of Assessment Method <ul><li>Validity Coefficient </li></ul><ul><li>Face Validity </li></ul><ul><li>Correlation With Other Predictors </li></ul><ul><li>Adverse Impact </li></ul><ul><li>Utility </li></ul>11-
  7. 7. Validity Coefficient <ul><li>Practical significance </li></ul><ul><ul><li>Extent to which predictor adds value to prediction of job success </li></ul></ul><ul><ul><li>Assessed by examining </li></ul></ul><ul><ul><ul><li>Sign </li></ul></ul></ul><ul><ul><ul><li>Magnitude </li></ul></ul></ul><ul><ul><ul><ul><li>Validities above .15 are of moderate usefulness </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Validities above .30 are of high usefulness </li></ul></ul></ul></ul><ul><li>Statistical significance </li></ul><ul><ul><li>Assessed by probability or p values </li></ul></ul><ul><ul><li>Reasonable level of significance is p < .05 </li></ul></ul><ul><li>Face validity </li></ul>11-
  8. 8. Correlation With Other Predictors <ul><li>To add value, a predictor must add to prediction of success above and beyond forecasting powers of current predictors </li></ul><ul><li>A predictor is more useful the </li></ul><ul><ul><li>Smaller its correlation with other predictors and </li></ul></ul><ul><ul><li>Higher its correlation with the criterion </li></ul></ul><ul><li>Predictors are likely to be highly correlated with one another when their content domain is similar </li></ul>11-
  9. 9. Adverse Impact <ul><li>Role of predictor </li></ul><ul><ul><li>Discriminates between people in terms of the likelihood of their job success </li></ul></ul><ul><ul><li>When it discriminates by screening out a disproportionate number of minorities and women, </li></ul></ul><ul><ul><ul><li>Adverse impact exists which may result in legal problems </li></ul></ul></ul><ul><li>Issues </li></ul><ul><ul><li>What if one predictor has high validity and high adverse impact? </li></ul></ul><ul><ul><li>And another predictor has low validity and low adverse impact? </li></ul></ul>11-
  10. 10. Utility Analysis <ul><li>Taylor-Russell Tables </li></ul><ul><ul><li>Focuses on proportion of new hires who turn out to be successful </li></ul></ul><ul><ul><li>Requires information on: </li></ul></ul><ul><ul><ul><li>Selection ratio: Number hired / number of applicants </li></ul></ul></ul><ul><ul><ul><li>Base rate: proportion of employees who are successful </li></ul></ul></ul><ul><ul><ul><li>Validity coefficient of current and “new” predictors </li></ul></ul></ul>11-
  11. 11. Utility Analysis <ul><li>Economic Gain Formula </li></ul><ul><ul><li>Focuses on the monetary impact of using a predictor </li></ul></ul><ul><ul><li>Requires a wide range of information on current employees, validity, number of applicants, cost of testing, etc. </li></ul></ul>11-
  12. 12. Limitations of Utility Analysis <ul><li>While most companies use multiple selection measures, utility models assume decision is </li></ul><ul><ul><li>Whether to use a single selection measure rather than </li></ul></ul><ul><ul><li>Select applicants by chance alone </li></ul></ul><ul><li>Important variables are missing from model </li></ul><ul><ul><li>EEO / AA concerns </li></ul></ul><ul><ul><li>Applicant reactions </li></ul></ul><ul><li>Utility formula based on simplistic assumptions </li></ul><ul><ul><li>Validity does not vary over time </li></ul></ul><ul><ul><li>Non-performance criteria are irrelevant </li></ul></ul><ul><ul><li>Applicants are selected in a top-down manner and all job offers are accepted </li></ul></ul>11-
  13. 13. Determining Assessment Scores <ul><li>Single predictor </li></ul><ul><li>Multiple predictors </li></ul><ul><ul><li>Three models shown </li></ul></ul><ul><ul><li>Multiple hurdles model </li></ul></ul>11-
  14. 14. Relevant Factors: Selecting the Best Weighting Scheme <ul><li>Do decision makers have considerable experience and insight into selection decisions? </li></ul><ul><li>Is managerial acceptance of the selection process important? </li></ul><ul><li>Is there reason to believe each predictor contributes relatively equally to job success? </li></ul><ul><li>Are there adequate resources to use involved weighting schemes? </li></ul><ul><li>Are conditions under which multiple regression is superior satisfied? </li></ul>11-
  15. 15. Ex. 11.4: Combined Model for Recruitment Manager 11-
  16. 16. Hiring Standards and Cut Scores <ul><li>Issue -- What is a passing score? </li></ul><ul><ul><li>Score may be a </li></ul></ul><ul><ul><ul><li>Single score from a single predictor or </li></ul></ul></ul><ul><ul><ul><li>Total score from multiple predictors </li></ul></ul></ul><ul><li>Description of process </li></ul><ul><ul><li>Cut score - Separates applicants who advance from those who are rejected </li></ul></ul>11-
  17. 17. Exh. 11.5: Consequences of Cut Scores 11-
  18. 18. Hiring Standards and Cut Scores (continued) <ul><li>Methods to determine cut scores </li></ul><ul><ul><li>Minimum competency </li></ul></ul><ul><ul><li>Top-down </li></ul></ul><ul><ul><li>Banding </li></ul></ul><ul><li>Professional guidelines </li></ul>11-
  19. 19. Ex. 11.6: Use of Cut Scores in Selection Decisions 11-
  20. 20. Discussion Questions <ul><li>What are the positive consequences associated with a high predictor cut score? What are the negative consequences? </li></ul><ul><li>Under what circumstances should a compensatory model be used? When should a multiple hurdles model be used? </li></ul>11-
  21. 21. Methods of Final Choice <ul><li>Random selection </li></ul><ul><ul><li>Each finalist has equal chance of being selected </li></ul></ul><ul><li>Ranking </li></ul><ul><ul><li>Finalists are ordered from most to least desirable based on results of discretionary assessments </li></ul></ul><ul><li>Grouping </li></ul><ul><ul><li>Finalists are banded together into rank-ordered categories </li></ul></ul><ul><li>Ongoing hiring </li></ul><ul><ul><li>Hiring all acceptable candidates as they become available for open positions </li></ul></ul>11-
  22. 22. Ex. 11.8: Methods of Final Choice 11-
  23. 23. Decision Makers <ul><li>Role of human resource professionals </li></ul><ul><ul><li>Determine process used to design and manage selection system </li></ul></ul><ul><ul><li>Contribute to outcomes based on initial assessment methods </li></ul></ul><ul><ul><li>Provide input regarding who receives job offers </li></ul></ul><ul><li>Role of managers </li></ul><ul><ul><li>Determine who is selected for employment </li></ul></ul><ul><ul><li>Provide input regarding process issues </li></ul></ul><ul><li>Role of employees </li></ul><ul><ul><li>Provide input regarding selection procedures and who gets hired, especially in team approaches </li></ul></ul>11-
  24. 24. Legal Issues <ul><li>Legal issue of importance in decision making </li></ul><ul><ul><li>Cut scores or hiring standards </li></ul></ul><ul><li>Uniform Guidelines on Employee Selection Procedures (UGESP) </li></ul><ul><ul><li>If no adverse impact, guidelines are silent on cut scores </li></ul></ul><ul><ul><li>If adverse impact occurs, guidelines become applicable </li></ul></ul><ul><li>Choices among finalists </li></ul>11-