Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Caldwell seminar

200 views

Published on

ECL_RC_OII

Published in: Science
  • Be the first to comment

  • Be the first to like this

Caldwell seminar

  1. 1. A Unique and Observable Imprint of Infla8on Robert Caldwell / Dartmouth College
  2. 2. Dartmouth College Hanover, New Hampshire
  3. 3. Cosmic Microwave Background / Temperature Anisotropy / Planck 2015 SMICA map: combined input, painted mask
  4. 4. Cosmic Microwave Background / Temperature Anisotropy / Planck 2015 353 GHz map: polarized emission from dust grains traces galacGc magneGc field
  5. 5. What are we looking for? Swirls in the paIern of polarizaGon of the cosmic microwave background Coherent on ~degree scales, with sub-micro Kelvin magnitude A preferred handedness? (already spoIed)
  6. 6. cosmic whirls Right ascension [deg.] Declination[deg.] BICEP2: B signal 0.3μK −50050 −65 −60 −55 −50 −0.3 0 0.3 μK BICEP2 2014 BICEP2 / KECK x Planck 2015 Infla%onary gravita%onal waves? Not so fast! The search conGnues…
  7. 7. What Is Infla%on? A burst of expansion in which the early Universe grows exponenGally in Gme It puts the BANG in the BIG BANG InflaGon is the physics of a cosmic scalar field V φ Slow roll: @V/@ ⌧ 3H ˙ H ⌘ d ln a dt ' constant ! a / eHt The scale of the Universe grows exponenGally H ' 1014 GeV ! t ' 10 36 sec, ln a/ai ' 60 Solves the horizon problem! A clean slate for the observable Universe! ✏ ⌘ ˙H/H2 ⌧ 1 ¨ + 3H ˙ + V, = 0
  8. 8. Space-Gme distorGon hij as a quantum field Classical Pendulum: very boring. Quantum Pendulum: very exciGng! initial final Ei = 1 2 ~!i Ef = 1 4 ~!i !i = p g/Li !f = p g/Lf ni = 0 nf = !i/4!f initial final Ei = 1 2 ~!i Ef = 1 2 ~!f !i = p g/Li !f = p g/Lf ni = 0 nf = 0 Let the rope out quickly Let the rope out slowly For inflaGon, nf > 1027 ! Consider the QM of h as a pendulum whose length is controlled by the cosmic expansion ti, Li tf , Lf Quantum Mechanics of Space-Time
  9. 9. What Is Infla%on? A burst of expansion in which the early Universe grows exponenGally in Gme It puts the BANG in the BIG BANG InflaGon is the physics of a cosmic scalar field V δφ Quantum fluctuaGons: Explains the origin of large scale structure, as observed in the cosmic microwave background anisotropy paIerns and in the distribuGon of galaxies! h 2 ik = (H/2⇡) 2 Density spectrum: GW spectrum: φ hh2 i+,⇥,k = 2 (2/MP )2 h 2 ik h⇣2 ik = (H/ ˙)2 h 2 ik Review: Baumann 2012
  10. 10. What Is Infla%on? A burst of expansion in which the early Universe grows exponenGally in Gme It puts the BANG in the BIG BANG InflaGon is the physics of a cosmic scalar field V δφ Tilt: H slowly decays during inflaGon The PRIZE of cosmology: detect the long wavelength GWs, a unique feature of inflaGon φ RaGo: Amplitude of GW to density spectra V ' (r/0.01) ⇥ (1016 GeV)4 h⇣2 ik = 1 8⇡2✏ ✓ H 2⇡ ◆2 ! P⇣ / kns 1 r ⌘ hh2 i+⇥/h⇣2 i = 16✏
  11. 11. What Is Infla%on? A (Nearly) Scale Invariant Spectrum of Density PerturbaGons and GravitaGonal Waves “Let’s go to the board” cosmic %ny SIZE early late TIME H 1 Only inflaGon stretches density, GWs to lengths “outside” the Hubble radius (Nearly) Scale Invariant pick a radius: h i = 0 h 2 i = constant
  12. 12. Picture of the CMB A snapshot of the early universe “Let’s go to the board”
  13. 13. cosmic whirls ? These are a unique, and possibly observable imprint of inflaGon. Kamionkowski, Kosowsky, Stebbins; Seljak & Zaldariagga 1997
  14. 14. What Is Infla%on? A burst of expansion in which the early Universe grows exponenGally in Gme It puts the BANG in the BIG BANG Slow roll for a scalar field: V = 1 2 m2 2 if then m MP ✏ = 1 2 M2 P (V 0 /V )2 ⌧ 1 Detectable GW spectrum implies large field excursion MP = O(1) p r/0.01
  15. 15. Novel GravitaGonal Behavior L = 1 2 M2 P R 1 4 ~Fµ⌫ · ~Fµ⌫ ~Fµ⌫ = @µ ~A⌫ @⌫ ~Aµ g ~Aµ ⇥ ~A⌫ SU(2) Aa i = (⌧) a i flavor space locked ~Aµ · ~e⌫ = a(⌧)yµ⌫ gµ⌫ = a2 (⌧)hµ⌫ Devulder, Maksimova, RC 2016, 2017 Bielefeld, RC 2015, 2016
  16. 16. inspiraGon: Tadashi Tokieda camera: Ralph Gibson
  17. 17. Models of InflaGon Adshead & Wyman 2012; Maleknejad & Sheikh-Jabbari 2011; Dimastrogiovanni & Peloso 2013 Chromo-Natural InflaGon, Gauge-FlaGon L = 1 2 M2 P R 1 2 (@ )2 V ( ) 1 4 Fa µ⌫Fµ⌫ a + M Fa µ⌫ eFµ⌫ a L = 1 2 M2 P R 1 4 Fa µ⌫Fµ⌫ a + (Fa µ⌫ eFµ⌫ a )2 V = µ4 (1 cos /f) ! 1 2 m2 2
  18. 18. Models of InflaGon ns = 0.9667 ± 0.0040 (1 ) r < 0.07 (95% C.L.) Planck 2016 BKP 2016 CMB-S3
  19. 19. New: Toy Model of InflaGon Devulder & RC 2017 L = 1 2 M2 P R 1 2 (@ )2 V ( ) 1 4 Fa µ⌫Fµ⌫ a + M Fa µ⌫ eFµ⌫ a V = 1 n m4 ( /m)n
  20. 20. New: Toy Model of InflaGon V is too steep to inflate: But, for a wide range of iniGal condiGons the coupling flaIens the effecGve potenGal InflaGon! @ @ ⇣ V M F eF ⌘ ! 0 ✏V 1
  21. 21. New: Toy Model of InflaGon Scalar FluctuaGons: δχ, δΑ three dynamical modes, three constraints Tensor modes: h, δΑ four dynamical modes GeneralizaGon: SU(2) to SU(N)
  22. 22. New: Toy Model of InflaGon CMB-S3
  23. 23. Chiral GravitaGonal Waves TB BB EB ' 0.9 Gluscevic & Kamionkowski 2010 This model predicts An addi8onal, unique observable!
  24. 24. Look for curl paIern in the polarizaGon. If you see it on large angular scales, then you have spoIed gravitaGonal waves. Is the curl paIern correlated with hot or cold spots? Or with the gradient paIern in the polarizaGon? If no, then the gravitaGonal waves have no preferred handedness. If yes, then the gravitaGonal waves do have a preferred handedness.
  25. 25. Leptogenesis NR NL = 1 24(16⇡2) R d4 x p gR eR Eguchi, Gilkey, Hanson (1980) leptons created, with asymmetry
  26. 26. Leptogenesis Sakharov CondiGons •  ViolaGon of baryon number •  CP violaGon •  Out of equilibrium … saGsfied •  Lepton number violated •  Inflaton/gauge field are parity-odd •  InflaGon is far out of equilibrium
  27. 27. Leptogenesis ⌘ ⌘ nB n ' 1 7 ⇥ 28 79 ⇥ hn`i s ⌘ ' 6.1(±0.04) ⇥ 10 10 Planck 2016 Convert to baryon asymmetry by SM electroweak processes CMB-S3 (3σ) An observable within reach!
  28. 28. Axion Gauge-Field Infla8on Viable scalar spectrum, Observable tensor spectrum Unique imprint: chiral asymmetric SGWB Leptogenesis implies a lower bound for B modes

×