Maletin cesep2013

1,058 views

Published on

N-Doped nanoporous carbons for high power supercapacitors

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,058
On SlideShare
0
From Embeds
0
Number of Embeds
465
Actions
Shares
0
Downloads
36
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Maletin cesep2013

  1. 1. N-Doped Nanoporous Carbons for High Power Supercapacitors Mülheim an der Ruhr, Sep. 23-26 ISPE NASU
  2. 2. ISPE NASU Nanoporous carbons for high power supercapacitors 2
  3. 3. ISPE NASU Nanoporous carbons for high power supercapacitors • Founded by Prof. V.V. Strelko in 1991. • Main directions: sorption, ion exchange, catalysis, and energy storage with the use of carbons and metal oxides. • Nanoporous carbons to be used in advanced sorption technologies for the extraction, separation, concentration, and purification in industry, medicine, environment protection and in energy storage. 3
  4. 4. ISPE NASU Nanoporous carbons for high power supercapacitors 4
  5. 5. For batteries: ~ 102 W.h/kg d + + + + _ _ _ _ C = Q U = A  d E = 1 2 CU2 Energy Power output For capacitors: ~ 104 W/kg For batteries: ~ 102 W/kg For capacitors: ~ 10-2 W.h/kg For SUPERCAPACITORS: E ~ 100  101 W.h/kg P ~ 104 W/kg ISPE NASU Nanoporous carbons for high power supercapacitors 5
  6. 6. First patents: H.E. Becker, US Patent 2 800 616 (General Electric Co.) 1957 R.A. Rightmire, US Patent 3 288 641 (SOHIO) 1966 bulk electrolyte - - - - + + + + _ _ _ _ + + + + equivalent circuit: Re For activated carbons: ~~A 1200 m2/g CDEL ~~ 12 F/cm2 ~~d 1 nm ~~C = CDEL x A 150 F/g C 10 F/cc~~For a SC device: d C = A  When a potential is applied to the electrodes, a DEL forms at the electrode/electrolyte interface. It is this layer that stores electrostatic energy and functions as the double layer capacitor. ISPE NASU Nanoporous carbons for high power supercapacitors 6
  7. 7. 7 1 2 3 ISPE NASU Nanoporous carbons for high power supercapacitors 1 and 2 look more promising than 3
  8. 8. 8 Slit-shaped pores or just shear cracks of graphene layers Nanoporous carbons for high power supercapacitors ISPE NASU
  9. 9. • AM1 semi-empirical quantum-chemical method was used to evaluate the energy parameters (EHOMO, ELUMO, electron work function, and energy gap) of various carbons. • In calculations, C96 carbon clusters containing 37 condensed rings were used. To model N- and O- containing carbons, some of C-atoms were substituted by N- and O- atoms. As another option, heteroatoms were bonded with edge C-atoms. V.V. Strelko. J. Energy Chem., 2013, 22, 174-182 (and refs therein). ISPE NASU Nanoporous carbons for high power supercapacitors 9
  10. 10. ISPE NASU Nanoporous carbons for high power supercapacitors Ehomo,eV ∆E, eV -7.20 4.88 -7.47 4.91 -6.02 3.95 -5.93 3.81 C96 cluster Pyridine-N Centre-N Valley-N Ehomo, eV ∆E, eV -5.91 3.48 -6.18 3.66 -5.64 3.10 10
  11. 11. ISPE NASU Nanoporous carbons for high power supercapacitors c96o4 c94o4 C96O11 c96 c92o4 c96o4 EHOMO,eV -7.20 ∆E, eV 4.88 -5.66 2.03 -6.40 2.29 EHOMO,eV -7.17 -6.32 -6.41 DE, eV 4.70 2.72 3.81 11
  12. 12. ISPE NASU Nanoporous carbons for high power supercapacitors Maximum EHOMO value can be achieved in C92N3O cluster. This results in the highest electron donor ability. 12
  13. 13. ISPE NASU Nanoporous carbons for high power supercapacitors Batteries SC Flywheels Specific energy stored, W.h/kg 30… 150 3… 6 4… 9 Specific power @ 95% eff., kW/kg 0.1… 1 1… 10 2… 4 Supercapacitors are NOT energy devices, they ARE power devices! Key SC applications are related with covering the peaks of power, load leveling the batteries, kinetic energy recovery, etc. 13
  14. 14. ISPE NASU Nanoporous carbons for high power supercapacitors 14
  15. 15. Rin = ʃI2Rint = RLoad/(RLoad + Rin) ~ 1/ Rin 15 Nanoporous carbons for high power supercapacitors ISPE NASU
  16. 16. rAl-C ≤ 0.01 (in Yunasko technology) rC ~ 0.05 Thus: rEl ~ 0.75 “pore resistance” ~ 0.6 SC resistivity (in W.cm2) total ~ 0.8 Though: rEl-in-bulk ~ 0.15 (electrode+separator thickness) Rin 16 Nanoporous carbons for high power supercapacitors ISPE NASU
  17. 17. Nanoporous carbons for high power supercapacitors ISPE NASU 17
  18. 18. 18 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 2 4 6 8 10 12 14 16 EDLCresistivity,R,Ohm.cm2 Diffusion coefficient, D, 10-10 m2/s Diffusion coefficients of BF4 - anions in NP carbons (pulsed field-gradient 19F NMR measurements, see: Y. Cohen, L. Avram, L. Frish; Angew. Chem. Int. Ed., 2005, 44, p.520 ) Nanoporous carbons for high power supercapacitors ISPE NASU
  19. 19. 19 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1 1.2 1.4 1.6 1.8 2 2.2 EDLCresistivity,R,Ohm.cm2 Diffusion coefficient, D, 10-10 m2/s Diffusion coefficients of EtMe3N+cations in NP carbons (pulsed field-gradient 1H NMR measurements, see: Y. Cohen, L. Avram, L. Frish; Angew. Chem. Int. Ed., 2005, 44, p.520 ) Nanoporous carbons for high power supercapacitors ISPE NASU
  20. 20. 20 Diffusion coefficients of Fc+ cations in NP carbons (Porous-C Rotating Disc Electrode measurements, see: (a) A.J.Bard, L.R.Faulkner; Electrochemical Methods. Fundamentals and Applications (2nd ed.); Wiley, 2001, p.335 ); (b) Bonnecaze, R.T., Mano, N., Nam, B., Heller, A. On the behavior of the porous rotating disk electrode. J Electrochem. Soc. 2007,154, F44-7. NOTE: in bulk solution Deff = 10.1×10-10 m2/s ISPE NASU Nanoporous carbons for high power supercapacitors
  21. 21. 21 Nanoporous carbons for high power supercapacitors ISPE NASU
  22. 22. -10 0 10 20 30 40 50 60 70 40 50 60 70 80 90 100 110 120 DC=2.7V AC= 5mV Freq --> 0.1Hz to 10 kHz 1- poor 2- typical 3- optimized SC design: 1 2 3 23 1 22 Nanoporous carbons for high power supercapacitors ISPE NASU
  23. 23. 23 Nanoporous carbons for high power supercapacitors ISPE NASU
  24. 24. YUNASKO single SC cells and combined modules (Li-ion battery and SC stack in parallel) 24 Module: 14 V Max.current: 1200 A Mass: 2.8 kg Single cells: 480 F 1200 F 1500 F Nanoporous carbons for high power supercapacitors ISPE NASU
  25. 25. 15 ÷ 45 V, 4 ÷ 6 kg (spot welding: current up to 7 kA; stud welding: stud  12mm) 25 Nanoporous carbons for high power supercapacitors ISPE NASU
  26. 26. 26 48 V, 165 F: Max surge voltage: 52 V DC pulse resistance: <4 mΩ Mass: 12 kg equipped with a proprietary voltage balancing system and temperature sensor Nanoporous carbons for high power supercapacitors ISPE NASU
  27. 27. 27 16 V, 200 F: Max surge voltage: 18 V DC pulse resistance: 0.6 mΩ Mass: 2.5 kg equipped with a proprietary voltage balancing system and temperature sensor Nanoporous carbons for high power supercapacitors ISPE NASU
  28. 28. 28 Continuous cycling the 16V module over 8 hours basic city duty cycle ΔT: cells in the centre cells at the edge Time, s V A, charge A, discharge Nanoporous carbons for high power supercapacitors ISPE NASU
  29. 29. 29 Capacitance, F Internal resistance, mΩ Time constant, s Spec. energy (CU2 /2), W.h/kg Spec. power (95% eff.), kW/kg Max. spec. power, kW/kg SC power cells (2.7V) 480a 0.20 0.10 4.9 10.2 91 1200a,b 0.10 0.12 5.3 8.9 79 1500b 0.09 0.14 6.1 9.1 81 Hybrid cells (2.8 V) 6000a 1.0 6.0 37 4.5 NA 16 V module (6 “power” cells of 1200F in series) 200c,d 0.6 0.12 2.8 4.8 43 48 V module (18 “energy” cells of 3000F in series) 165d 4.0 0.65 4.4 1.4 12 a) Also tested in ITS, UC Davis, CA; b) Also tested in JME, Cleveland, OH; c) Also tested in Wayne State University, Detroit, MI; d) Equipped with a proprietary voltage balancing system (patent pending). Nanoporous carbons for high power supercapacitors ISPE NASU
  30. 30. ISPE NASU Nanoporous carbons for high power supercapacitors 30
  31. 31. 31 “During the recent ECCAP Symposium at AABC-2013 in Strasbourg (June 24-26) a recognised specialist in the field of supercapacitor research – Dr. John Miller from JME Inc. revealed testing results for the six key ultracapacitor producers, including a market leader – Maxwell Technologies. The results showed substantial advantage of YUNASKO technology over the closest analogues.” (http://us1.campaign-archive1.com/?u=84cc935cd75c22a368d1cd12e&id=31a3699821&e=193f657ac6) ISPE NASU Nanoporous carbons for high power supercapacitors
  32. 32. Financial support from FP7 Project # 286210 (Energy Caps) is very much acknowledged Nanoporous carbons for high power supercapacitors ISPE NASU 32

×