Successfully reported this slideshow.
Your SlideShare is downloading. ×

TAAI 2016 Keynote Talk: Intercultural Collaboration as a Multi‐Agent System


Check these out next

1 of 33 Ad

More Related Content

Viewers also liked (20)

Similar to TAAI 2016 Keynote Talk: Intercultural Collaboration as a Multi‐Agent System (20)


Recently uploaded (20)


TAAI 2016 Keynote Talk: Intercultural Collaboration as a Multi‐Agent System

  1. 1. Intercultural Collaboration as  a Multi‐Agent System Toru Ishida Department of Social Informatics Kyoto University Part 1: Multi‐Agent Systems: Real‐World Applications Part 2: Intercultural Collaboration: A New  Research Field Part 3: Multi‐Agent System Problems in Intercultural Collaboration
  2. 2. Part 1 Multiagent Systems: Real‐World Applications
  3. 3. Multi‐Agent Systems • The research area is often called Autonomous Agent and Multi‐ Agent System. • It models a human society as a collection of independent  decision making agents. • It analyzes and visualizes behaviors of agents via Multi‐Agent  Based Simulation.
  4. 4. Multiagent System: A Major Research Area of AI • IJCAI 2016 ( Int. Joint Conf. on Artificial Intelligence) • Machine Learning: 22 sessions • Agent‐based and Multi‐agent Systems: 12 • Knowledge Representation, Reasoning, and Logic: 10  • Planning and Scheduling: 10  • Textbook of Artificial Intelligence  Overview of the book The main unifying theme is the idea of an intelligent  agent. We define AI as the study of agents that receive  percepts from the environment and perform actions……
  5. 5. DAIWS 1980 Launched by Researchers in the United States ICMAS 1995 International Conference integrating workshops in the United States, Europe, and Japan PRIMA 1998 Asia Pacific International Conference AAMAS 2002 A+ Ranked International Conference MACC(JP) MAAMAW(EU) DAIWS(US) ICMASPRIMA (Workshop) AAMAS AA(US) ATAL(EU) PRIMA (Conference) Asia International 1980 2000 1990 2010 How We Developed Our Research Community
  6. 6. Multi‐Agent Systems are Getting Real Theory(Research for Computational Models of Human Society ) PRACTICE(Solving Problems for Society) 1980 1990 2000 2010 2020 Multi‐Agent Based Simulation (Economy, Disaster Management) Matching Algorithm (Medical Care) Collaboration Distributed Search  Self‐Organization       Multi‐Agent Based Simulation High Speed Computing Big Data Negotiation  Market Auction      Game Theory  Matching Algorithm Game Theory (Security)
  7. 7. Target #1 Target #2 Target #1 4, ‐3 ‐1,  1 Target #2 ‐5,  5 2, ‐1 Example1: Security Game Milind Tambe University of Southern California How to allocate limited security resources • Defenders commit first, and then Attackers  observe defenders’ behavior and make decisions. • Optimal allocation: Weighted random Stackelberg Equilibrium Contribution to Security 29/52 23/52 22/52 30/52 Utility=0.433 Utility=0.294 Deployed at Los Angeles International Airport Attacker Defender 1000 Flights, 20 air marshals          10 41 combinations
  8. 8. Example2: Kidney Exchange • First Idea 1986 [Rapaport]  • Exchange Started in 2003 [Roth, Sönmez, Ünver, …] • United Network for Organ Sharing (UNOS) adopted  Sandholm’s algorithm in 2008 and executes it twice a  week. Tuomas Sandholm Carnegie Mellon UniversityIn the US, more than 70,000 patients are waiting  for kidney transplants, but only 10,000  transplants are carried out each year.  30‐chain! [New York Times 2/18/2012] Wife Husband Mother Daughter Contribution to Medical Care 
  9. 9. Price Share of  Tokyo Stock Exchange  Tick Size  • If Tick Size (minimum unit of ordering price) is too  large, stock prices become unstable. • A newly discovered threshold made stock prices  stable. • From July 2014, Tokyo Stock Exchange has changed  tick sizes of TOPIX100 stocks. This impacted 80% of  stock exchanges in Japan. Example 3: Designing Market Systems by Multi‐Agent  Based Simulations Kiyoshi IZUMI University of Tokyo Contribution to Economy  1000 agents with  different strategies
  10. 10. Example 4: Decision‐Making for Tsunami Evacuation  by Multi‐Agent Based Simulations • Background  • 5,781 people are living with risk of  tsunami by earthquake. • Maintain escape routes to places  over 2 meters above sea level. • Result • Determine bridges for  reinforcement. • Determine the priority of streets to  remove snow. 10 Itsuki Noda  National Institute of Advanced  Industrial Science and Technology Contribution to Disaster Management ① ② ③ ④⑤ ⑦ ⑥ ⑧ ⑨ ⑩ ⑪ Select bridges for   reinforcement from 11 bridges Condition 1: Prioritize 11 streets to remove  snow → 211 × 211 = 4,194,304 cases Condition 2:
  11. 11. Part 2 Intercultural Collaboration: A New Research Field
  12. 12. Intercultural Collaboration • After 9.11 we created a concept of intercultural collaboration,  where participants in the same problem field with different  cultures and languages work together towards the shared goal.  • Because the research target emphasizes  collaboration rather than communication, we  can clearly identify research objectives; goal‐ directed group activities can be evaluated both  qualitatively and quantitatively.  2001
  13. 13. To develop open source software by using machine translation. China Team Korea Team ICE2002 Organizers Translation Checker Japan Team Malaysia Team Intercultural Collaboration Experiment (ICE 2002)
  14. 14. Translation among  Japanese, Chinese,  Korean, Malay, and  English 31,000 messages in  one year. Message Input Translation Button Translated Massage Chinese Japanese Korean Malay English Multi‐Language BBS 2002
  15. 15. Translation Pentagon for ICE2002 Arcnet/sangenjaya Japanese English Malay Chinese Korean J ‐server Hard to collect translation  engines to cover five  languages. Hard to understand their  contracts. Hard to evaluate their services. Hard to customize provided  services. 2002
  16. 16. The Language Grid Fragmentation and recombination is the key to create customized  multi‐language environments for various intercultural activities. more more Disaster Management Education Medical Care Sharing Multilingual Information Universal Playground Multilingual Reception Language Support for Multi-language and Multi-cultural Communities Sharing language resources such as dictionaries and machine translators around the world German Research Center for Artificial Intelligence Stuttgart University National Research Council, Italy Chinese Academy of Sciences NTT Research Labs Asian Disaster Reduction Center Kookmin University Princeton University NECTEC University of Indonesia Google. Inc.Kyoto University NICT 2007
  17. 17. Dictionary (Data) Parallel Text (Data) Human Interpreter Machine Translation Wrapping Wrapping Wrapping Wrapping Dictionary Dictionary Service Parallel Text Parallel Text Service Machine Translator Machine Translation Service Human Translator Human Translation Service Accurate word translation Approximate translation Low quality high speed translation High quality low speed translation 避難場所 disaster shelter 避難場所は、家から近い学校です。 In the case of disaster, people should be evacuated to a school nearby their house. 避難場所は、家から近い学校です。 Disaster shelter is school close from a house. 避難場所は、家から近い学校です。 Your disaster shelter is the school closest to your house. From Language Resources to Language Services
  18. 18. Language Grid Operation Centers Kyoto Operation Center (Kyoto Univ.,2007 ‐ ) Jakarta Operation Center (Univ. of Indonesia, 2012 ‐ ) Xinjiang Operation Center  (Xinjiang Univ., 2014‐ ) East Asian Languages South‐East/South Asian Languages Central Asian Languages Share 225 language services from 170 groups in 22 countries Bangkok Operation Center (NECTEC, 2010 ‐ ) NSF LAAPS Grid Project LDC EU Meta Share Project ELRA/ELDA Federated Operation of Language Grid Servers 
  19. 19. Education Agriculture Knowledge Parents Youth Japanese Experts Vietnamese Farmers JAVI EN The goal is to increase rice productivity and to decrease the environmental  burdens caused by excess use of agrichemicals. The challenge is to transfer rice harvesting knowledge at realtime from Japanese experts to Vietnamese farmers in rural areas with low literacy rate. A youth‐mediated communication (YMC) model was invented. Children receive IT training, and act as mediators between parents and experts.  Agricultural Support in Vietnam 2011
  20. 20. Overview of the Project • Organizations – Kyoto University: Multilingual Communication – NPO Pangaea: Education, Activities – University of Tokyo, Mie University : Agricultural Knowledge – Vietnam National University:Local Arrangements – MARD, DARD: Planning and Controlling Experiments • Schedule – 2011/02 ~ 2011/03 1st Experiment (Thien My, Vinlong Province) – 2012/10 ~ 2013/01 2nd Experiment (Thien My, Vinlong Province) – 2013/09 ~ 2014/01 3rd Experiment (Thien My  and Dong Thanh, Vinlong Province) – 2014/02 ~ 2011/06 4th Experiment (Dong Thanh, Vinlong Province) Observation Recording Question/Answer
  21. 21. Example of Experiment Schedule 2012/09 2012/10 2012/11 2012/12 2013/01 Participants: 15 Youth Sowing Rice planting Rice reaping Rice Growing YMC Exp. Preparing Experiment Workshop 2012/10/29 2012/12/15 2012/12/12012/10/19
  22. 22. Designing Language Communication Japanese: たんぼの準備として、田起こしや代掻き、あぜぬりをして下さ い。 Vietnamese: Chuẩn bị đất là kết hợp giữa canh tác đất, cày bừa và đắp bờ. (English: Land preparation is a combination of tillage of the soil, puddling and levee painting.) Example-based Translation Service Translation Service with Agricultural Dictionary Japanese- English Translator English- Vietnamese Translator Multilingual Dictionary for Agriculture ☆ Japanese Part-of-Speech Tagger Vietnamese Part-of-Speech Tagger Multilingual Parallel Texts for Agriculture ☆☆ Example- Based Machine Translator Japanese Dependency Parser Back Translation Best Translation Selection Online Consultation by Human Vietnamese Farmers Japanese Experts ☆ Multilingual Dictionary for Agriculture is provided by NPO Pangaea, Japan National Agriculture Research Center, Vietnam MARD. Entry Number: 3,099 (Sep. 2014) ☆☆ Multilingual Parallel Texts for Agriculture is provided by NPO Pangaea, Japan National Agriculture Research Center, Vietnam MARD. Entry Number: 2,485 (Sep. 2014) Best Translation Selection Service
  23. 23. Designing Knowledge Communication EducationYouth Vietnamese Farmers JAEN Leaf Color Plate Recipe Card (textbook)  Measure Insect Plate PassportCamera Parallel Text (compiled) Japanese ExpertsVI Parents Agriculture Knowledge By NPO Pangaea Language services are not enough for knowledge communication.
  24. 24. Part 3 Multi‐Agent System Problems in Intercultural Collaboration
  25. 25.  Self‐initiated repair or user adaptation to machine  translation:   Before posting a message, the sender modifies input  texts to improve translation quality.   Other‐initiated repair or collaborative translation:   If a translation was imperfect, collaboration is initiated  by a receiver.  Topic 1: Collaboration Protocol Interaction patterns among users in ICE2002. S. Nomura, T. Ishida, N. Yamashita, M. Yasuoka and K. Funakoshi. Open source software development with your  mother language: Intercultural Collaboration Experiment 2002. International Conference on Human‐Computer  Interaction, Vol. 4, pp. 1163‐1167, 2003. 2002
  26. 26. Collaborative Translation Protocol Machine Translator Source  Language  Side Target  Language  Side 1. Send the source sentence 2. Evaluate fluency of the  translation. 3. Send the sentence  which is modified to  be fluent. 4. Evaluate adequacy of the  translation against the  source sentence.  Improve adequacy of the translation result Improve fluency of the translation result D. Morita and T. Ishida. Collaborative translation by monolinguals with machine translators.  International Conference on Intelligent User Interfaces, pp. 361‐366, 2009. 2009
  27. 27. The Vietnam project aims at increasing the yield of rice.  One project member, an agricultural expert, recognized the lack of nitrogen in this  particular rice field, and suggested farmers to use fertilizer a little more.  The farmers did not follow this advice, since they believe  bugs will gather from  neighboring fields, if they increase the amount of fertilizer. Topic 2: Shaping a Problem 2015
  28. 28. Wicked Problem! Wicked problem is difficult or impossible to  solve because of incomplete, contradictory, and  changing requirements that are often difficult to  recognize. Because of complex interdependencies, the  effort to solve one aspect of a wicked problem  may reveal or create other problems. Wikipedia How to shape a problem?
  29. 29. Topic 3: Problem Solving Organization Japanese Experts Vietnamese Youths Vietnamese Farmers NPO Pangaea Univ. of Tokyo Kyoto Univ. MARD Mie Univ. Knowledge Communication Organizational Communication Japanese Bridger English Bridger Language Communication JAVI EN Vietnamese Bridger VNU DARD Agricultural Data Agricultural Knowledge Machine Translation 2015
  30. 30. Multi‐Agent Based Participatory Simulation  Analysis Design Field Experiment or Multi-Agent Based Participatory Simulation Language / Knowledge Communication ModelingMachine Translatio n (JA→EN) Post- Editing (EN→EN) Japanese Bridger Vietnamese Bridger Vietnamese Youth Japanese Expert Machine Translation (EN→VI) Parallel Texts (JA→VI) Pre- Editing (JA→JA ) English Bridger Post- Editing (VI→VI) 2015 Test technologies in advance with various stakeholders.
  31. 31. Problem Solving Organization Project Team for Tien My Commune, Tra On District, Vinh Long Province, Vietnam, Jan 5th, 2013 Problem solving organization guarantees contentious commitment of  stakeholders to the problem domain.
  32. 32. To be continued…. • Multi‐agent system research now contributes to our human  society. • Intercultural collaboration can be seen as multi‐agent system  research, and will reduce conflicts in the world.
  33. 33. Thank You! Special Thanks to: Tuomas Sandholm,Milind Tambe, Bo An, Itsuki Noda, Kiyoshi Izumi,  Shigeo Matsubara, Yohei Mukakami, Donghui Lin, Yumoko Mori,  Toshiyuki Takasaki