Successfully reported this slideshow.
Your SlideShare is downloading. ×

Giving is Caring: Understanding Donation Behavior through Email

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad

Check these out next

1 of 22 Ad

Giving is Caring: Understanding Donation Behavior through Email

Download to read offline

Every day, thousands of people make donations to humanitarian, political, environmental, and other causes, a large amount of which occur on the Internet. In our paper presented at CSCW'14, we describe a comprehensive large-scale data-driven study of donation behavior. We analyze a two-month anonymized email log from several perspectives motivated by past studies on charitable giving: demographics, user interest, external time-related factors and social network influence. We show that email captures the demographic peculiarities of different interest groups, for instance, predicting demographic distributions found in US 2012 Presidential Election exit polls. Furthermore, we find that people respond to major national events, as well as to solicitations with special promotions, and that social connections are the most important factor in predicting donation behavior.

Every day, thousands of people make donations to humanitarian, political, environmental, and other causes, a large amount of which occur on the Internet. In our paper presented at CSCW'14, we describe a comprehensive large-scale data-driven study of donation behavior. We analyze a two-month anonymized email log from several perspectives motivated by past studies on charitable giving: demographics, user interest, external time-related factors and social network influence. We show that email captures the demographic peculiarities of different interest groups, for instance, predicting demographic distributions found in US 2012 Presidential Election exit polls. Furthermore, we find that people respond to major national events, as well as to solicitations with special promotions, and that social connections are the most important factor in predicting donation behavior.

Advertisement
Advertisement

More Related Content

Slideshows for you (17)

Viewers also liked (20)

Advertisement

Similar to Giving is Caring: Understanding Donation Behavior through Email (20)

Advertisement

Recently uploaded (20)

Giving is Caring: Understanding Donation Behavior through Email

  1. 1. Giving  is  Caring   Understanding  Dona1on  Behavior  through  Email   @   circa  Fall  2012   Yelena  Mejova,  Qatar  Compu1ng  Research  Ins1tute   Ingmar  Weber,  Qatar  Compu1ng  Research  Ins1tute   Venkata  Rama  Kiran  Garimella,  Aalto  University   Michael  C.  Dougal,  University  of  California,  Berkeley   @  Computer  Supported  Coopera1ve  Work  and  Social  Compu1ng  (CSCW14)   February  19,  2014  
  2. 2. Mo1va1on   Impact  real  life!   hTp://www.opensecrets.org/pres12/  
  3. 3. Mo1va1on   1.  Can  we  detect  dona1ons  in  email?   2.  Can  we  verify  sociological  theories  on  charitable  giving?  
  4. 4. What  could  affect  dona1on  behavior?   •  Demographics   –  “individual  capacity”:  educa1on  &  income1   –  belonging  to  a  social  group2   •  Interest   –  seeing  as  more  needy  and  deserving3   •  Solicita1ons   –  influence  of  the  email  deluge4   •  Social  network   –  influence  /  homophily,  poli1cal  affilia1on5   •  External  influence   –  events  triggering  a  new  interest  or  awareness6  
  5. 5. 1.  Shier,  M.,  and  Handy,  F.  Understanding  online  donor  behavior:   the  role  of  donor  characteris1cs,  percep1ons  of  the  internet,   website  and  program,  and  influence  from  social  networks.   Interna'onal  Journal  of  Nonprofit  and  Voluntary  Sector  Marke'ng   (2012).     2.  Tajfel,  H.,  and  Turner,  J.  An  integra1ve  theory  of  intergroup   conflict.  The  social  psychology  of  intergroup  rela'ons  33  (1979),   47.     3.  Bekkers,  R.  Who  gives  what  and  when?  a  scenario  study  of   inten1ons  to  give  1me  and  money.  Social  Science  Research  39,  3   (2010),  369–381.     4.  Chan,  M.  The  impact  of  email  on  collec1ve  ac1on:  a  field   applica1on  of  the  side  model.  New  Media  &  Society  12,  8  (2010),   1313–1330.     5.  Bekkers,  R.,  and  Wiepking,  P.  A  literature  review  of  empirical   studies  of  philanthropy.  Nonprofit  and  Voluntary  Sector  Quarterly   40,  5  (2011),  924–973.     6.  Olson,  M.  The  logic  of  collec've  ac'on:  Public  goods  and  the   theory  of  groups,  vol.  124.  Harvard  Univ  Pr,  1965.    
  6. 6. Data   •  Collec1ng  “chari1es”  (total:  480)   –  Scraping  Forbes  and  US  News  top  chari1es  lists   –  Top  100  US  poli1cal  campaign  organiza1ons   –  Chari1es  relevant  to  the  prominent  news  stories  in  the  1me   period  (Wikipedia  Current  Events)   hTp://www.forbes.com/lists/2011/14/200-­‐largest-­‐us-­‐chari1es-­‐11_rank.html   hTp://www.usnews.com/usnews/biztech/chari1es/lists/intl_deve-­‐lopment.htm   hTp://www.fec.gov/data/CommiTeeSummary.do?format=html&elec1on_yr=2012   hTp://en.wikipedia.org/wiki/Portal:Current_events   •  Anonymized  Yahoo!  Mail   –  user  agrees  to  research   –  email  addresses  replaced  with  hashes   –  fields:  from,  to,  1tle   •  July  19  –  September  19,  2012  
  7. 7. Data   •  Emails  from  charity:  matching  from  field   •  Emails  thanking  for  dona1on:  manually  tuned  regex  (86%  assessed   precision)   –  from:  info@barackobama.com    subject:  Thank  you  for  your  dona'on!   •  Manually  categorized  chari1es  which  have  at  least  100  emails  in   dataset:   –  Medical,  Humanitarian,  Poli1cs,  Environmental,  Chris1an/Religious,   Military,  Children,  Public  Broadcas1ng,  Animals,  Internet  
  8. 8. Data   •  Donors  (≈100,000)  –  charity  thanked  them  for  a  dona1on   •  Interested  (≈100,000)  –  got  email  from  a  charity  but  did  not   donate   •  General  (≈10,000)  –  a  random  sample  of  the  rest                                    ≈  1  billion  emails  total   •  Is  the  email  treated  as  bulk  or  spam?    <10%  labeled  as  spam:  cancer.org,  lls.org,  redcross.org    >50%  labeled  as  bulk:  stjude,  dscc.org    >50%  labeled  as  spam:  wikimedia.org   •  In  the  analysis,  we  pay  aTen1on  only  to  emails  which  reach   the  inbox  
  9. 9. Demographics  
  10. 10. Demographics   •  Self-­‐reported  from  user  profiles   –  age,  gender,  zip  code   •  US  Census  to  es1mate     –  %  of  Bachelor  degrees,  median  household  income   age   gender   (male=1)   %  bachelors   median  HHI  
  11. 11. Demographics   age   gender   (male=1)   In  agreement  with  the   US  Presiden1al  Elec1on   exit  polls:   –  Younger   –  Female   –  Less  affluent   …  voters  favor  Obama   hTp://elec1ons.msnbc.msn.com/ns/poli1cs/ 2012/all/president/#exitPoll   %  bachelors   median  HHI  
  12. 12. Interest  
  13. 13. Interest   •  Classify  email  1tles  into  topical  categories  using  manually-­‐compiled   keyword  regexes  (avg  precision:  86.2%):   for  par1cular  topic   PBS   WGBH   incoming   for  par1cular  topic   outgoing  
  14. 14. Solicita1on  
  15. 15. Solicita1on   •  Does  increase  in  solicita1on  prompt  more  dona1ons?   1.  2.  3.  Compute  number  of  dona1ons  per  day  for  each  charity   Divide  into  three  terciles:  low,  medium,  high   Compute  Cohen’s  kappa  with  incoming  mail  from  charity   43%  of  organiza1ons   have  Cohen’s  kappa  >  0.3     That  is,  there  is  a   moderate  to  high   rela1onship  between   solicita1ons  and  dona1on  
  16. 16. Solicita1on   •  Can  we  detect  this  on  a  personal  scale?   –  Compute  probability  that,  given  the  user  will  donate  to  an   organiza1on,  that  he  or  she  donates  within  some  number  of  days  of   receiving  a  solicita1on   –  Compare  to  a  uniform  baseline   On  average,  cumula1ve   probability  of  a  dona1on  a{er   a  solicita1on  is  higher  by  8%   na1onalmssociety.org   wycliffe.org   lls.org   opera1onsmile.org   intervarsity.org   feedthechildren.org   dscc.org   worldvision.org   tbn.org   wikimedia.org   marchofdimes.com   mdausa.org   ronpaul2012.com   greenpeace.org   irusa.org   Medical   Chris1an   Medical   Medical   Chris1an   Humanitarian   Poli1cs   Humanitarian   Chris1an   Internet   Medical   Medical   Poli1cal   Environmental   Humanitarian   48.99   37.98   33.82   29.41   18.78   18.26   15.39   13.88   13.82   12.99   11.82   11.45   8.92   7.89   7.5   increase  in  dona1on  probability  
  17. 17. Social  network  
  18. 18. Social  network   •  Is  there  a  rela1onship  between  your  dona1ons  and  those  of  your  friends?   1.  2.  3.  4.  For  each  donor,  find  other  Yahoo  users  they  exchanged  emails  with   Normalize  number  of  friends  by  sampling  with  replacement  to  get  100   friends   Within  those  friends  we  can  find  other  donors  and  interested  users   Measure  strength  of  rela1onship  by  minimum  emails  sent  or  received   Donors  to  poli1cal  causes  have   almost  no  interac1on  with  others   who  donated  to  the  opposite  side   Spike  in  7th  bucket  (closest  friends)  is   greater  than  buckets  1-­‐6  at  p  <  0.01   each  bucket  contains  the   same  number  of  users  
  19. 19. External  Influence  
  20. 20. Dona(on  Volume   1.2   1   0.8   0.6   0.4   0.2   0   Paul  Ryan  announced  as  VP  candidate   9/19/1 9/17/1 9/15/1 9/13/1 9/11/1 9/19/1 9/17/1 9/15/1 9/13/1 9/11/1 9/9/12   9/7/12   9/5/12   9/3/12   9/1/12   8/30/1 8/28/1 8/26/1 8/24/1 8/22/1 8/20/1 8/18/1 8/16/1 8/14/1 8/12/1 8/10/1 8/8/12   8/6/12   8/4/12   8/2/12   Solicita1ons   1   0.8   0.8   0.6   0.6   0.4   0.4   0.2   0.2   Solicita1ons   0   1.2   1   0.8   0.6   0.4   0.2   0   Solicita(on  Volume   1.2   Solicita(on  Volume   T-­‐shirt  promo  “I  built  this”   9/9/12   9/7/12   9/5/12   9/3/12   9/1/12   8/30/1 8/28/1 8/26/1 8/24/1 8/22/1 “Photo  going  around  on  Facebook”   8/20/1 8/18/1 8/16/1 8/14/1 8/12/1 8/10/1 8/8/12   8/6/12   8/4/12   8/2/12   Dona1ons   7/31/1 7/29/1 7/27/1 7/25/1 Dona1ons   7/31/1 7/29/1 7/27/1 7/25/1 1   7/23/1 7/21/1 1.2   7/23/1 7/21/1 7/19/1 0   7/19/1 Dona(on  Volume   External  Influence   barackobama.com   Democra1c  Na1onal  Conven1on   Republican  Na1onal  Conven1on   miTromney.com  
  21. 21. Pu|ng  it  all  together   •  Sample  data  to  mi1gate  influence  of  chari1es  with  more   representa1on     •  Logis1c  regression  predic1ng  whether  user  donates  to  a  charity   For  each  friend  who  donates  to  a  charity,  the  likelihood  for   the  user  to  also  donate  to  that  charity  goes  up  by  24%   all  coefficients  are  significant  at   p  <  0.01  except  I4  and  S4  
  22. 22. Conclusions   •  Want  to  run  a  campaign?   –  Email  campaigns  can  be  effec1ve  –  solicita1on  works!   –  Tailor  to  your  campaign  to  your  audience   –  Leverage  social  network   –  Don’t  get  stuck  in  spam/bulk  folders   •  What’s  next?   –  Social  influence  or  homophily?   –  How  to  tailor  solicita1ons?   The  Language  that  Gets  People  to  Give:   Phrases  that  Predict  Success  on  Kickstarter   Tanushree  Mitra  |  Eric  Gilbert   [images  by  Wikimedia]  

×