Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
1
BICC Dimethyl Carbonate Plant Design and
Profitability Analysis
Charmaine Bennett
Sarah Maxel
Ye Yuan
Team #10
Date Subm...
2
Table of Contents
1. Introduction:.........................................................................................
3
1. Introduction:
As a versatile polymer product, polycarbonate resin is an important commodity chemical
in modern societ...
4
1
2
𝑂2 + 𝐢𝑂 β†’ 𝐢𝑂2 [Rxn. 2]
The reactor inlet stream includes a feed of MeOH, CO, and O2. The O2 fed into the
reactor is ...
5
operate at 130℃ and a total pressure of 30 atm. As a compromise between high selectivity and
low flow rates, a MR1 of 15...
6
2.3 Process Flow Diagram
6 A
E-100:
Reactor Feed
Preheater
1: Fresh Feed CO
14.6 MT/h
$22.0 MM/y
4
E-101:
Vap. Effluent ...
7
2.4 HYSYS Simulation Flow-sheet
Figure 4: HYSYS simulation flow sheet with properties of key process streams
8
2.4 Piping and Instrumentation Diagram
6 A
E-100
1: Fresh Feed CO
4
3: Fresh Feed
MeOH
E-101
8
E-1200
12
T-1200
7
14
15:...
9
2.5 Aspen HYSYS Simulation
Taking the non-idealities of the mixtures into account, the design variables obtained from
MA...
10
2.6 Separation System Design
There are two streams exiting our reactor due to the two-phases present in the reactor.
Th...
11
CO stream which is recycled to the reactor, a waste gas stream of carbon dioxide, and a liquid
stream which merges with...
12
Table 3: Proposed control system scheme and associated control loops for the DMC plant.
Loop
Number
Controller
Type
Con...
13
3. Economic Analysis
A cost analysis was conducted to determine the profitability and economic feasibility of
our conce...
14
the ISBL and the OSBL and the indirect cost was estimated as 30% of the direct costs. Both the
ISBL and the OSBL were e...
15
Figure 7: Sensitivity analysis of the net present value
versus conversion. Tax rate varied from 25% to 48%.
Figure 8: S...
16
across the plant are kept below 4 mol%. Oxygen was also selected as the limiting reagent to
restrict its presence to th...
17
4.1 Materials of Construction
Stainless steels and hastelloy are used in almost all areas of the plant, with the except...
18
Appendix A. Additional Figures
Figure 1: Selectivity (S) versus reactor conversion (X)
at reactor temperature of 130 ℃,...
19
Figure 5: Volume versus conversion at various reactor
temperatures. P=30atm, MR1=15, MR2=26
Figure 6: Volume versus con...
20
Figure 11: S vs X at T = 130℃, MR1 = 15, MR2 = 26,
and various pressures. Pressure has minimal effect on S
vs X.
Figure...
21
Appendix B. Reactor Modelling and S vs X analysis
Equations 1-4 below show the reaction rate and the corresponding rate...
22
Appendix C. Distillation Design Summary
Appendix C-1. Aspen User Interface / Aspen HYSYS Comparison Table
Table 1: Comp...
23
T-1300: High Pressure DMC Column
Number of Theoretical Stages 19 19 -
Reflux Ratio 1.4 1.4 -
Reboil Ratio 34.2 45.4 -
V...
24
Appendix C-2. Ternary Phase Diagram for First Distillation Column
Figure 1: Ternary phase diagram for the Water Extract...
25
Appendix C-3. Ternary Phase Diagram for Second Distillation Column
Figure 2: Ternary phase diagram for the High Pressur...
26
Appendix D. Economic Analysis
Appendix D-1. Economic Calculations
Revenue (R) = $135 MM
Dimethyl Carbonate (DMC) Produc...
27
πΉπ‘π‘œπ‘œπ‘™ =
𝑄 𝐢
𝑐 𝑝 Γ— βˆ†π‘‡π‘
Table 1: Coolant flowrates calculated.
Cooler 𝑄 𝐢 [πΎπ‘Š] 𝑐 𝑝 [
𝐾𝐽
π‘˜π‘”β„ƒ
] βˆ†π‘‡π‘[℃] πΉπ‘π‘œπ‘œπ‘™ [
π‘˜π‘”
β„Žπ‘Ÿ
]
E-13...
28
1.0 Γ— 108
π‘˜π½
β„Žπ‘Ÿ
Γ—
8400 β„Žπ‘Ÿ
8400
Γ— (
$4.9
𝐺𝐽
) = $4.2
𝑀𝑀
π‘¦π‘’π‘Žπ‘Ÿ
Waste Water:
3.5 Γ— 103
π‘˜π‘” π‘œπ‘“ π‘€π‘Žπ‘ π‘‘π‘’
π‘¦π‘’π‘Žπ‘Ÿ
Γ—
$0.06
1000 π‘˜π‘” π‘œπ‘“ ...
29
𝜌 𝜈 = 1.5 π‘˜π‘”/π‘š3
πœŒπœ„ = 829 π‘˜π‘”/π‘š3
πœ™ π‘“π‘™π‘œπ‘œπ‘‘ = 0.6
𝐴
𝐴 𝑛
= 0.8
Heat Exchangers:
Area of heat exchangers determined with the f...
30
Reactor=Pressure Vessel + Heat Exchanger (A-101-X): $ 0.136 MM
πΌπ‘›π‘ π‘‘π‘Žπ‘™π‘™π‘Žπ‘‘π‘’π‘‘ πΆπ‘œπ‘ π‘‘ = 𝐼𝐢
Pressure Vessel:
𝐼𝐢 π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ 𝑣𝑒𝑠𝑠𝑒...
31
$22
𝑀𝑀
π‘¦π‘’π‘Žπ‘Ÿ
Γ—
1 π‘¦π‘’π‘Žπ‘Ÿ
~6 π‘šπ‘œπ‘›π‘‘β„Žπ‘ 
= $3.7 𝑀𝑀
Appendix D-2. Economic Spreadsheet
32
Appendix D-3. IRR Spreadsheet
33
Appendix D-4. Breakeven Analysis
34
Appendix E. Chemical Properties
Name
Chemical
Formula
Molecular
Weight
Physical
Properties
Boiling
Point (Β°C)
Freezing
...
35
Name Toxicology Special Precautions NFPA Rating
Dimethyl
Carbonate
(DMC)
Can cause eye and skin irritation upon contact...
36
Appendix F. Level 2 Molar Flow Rates
Figure 1: Molar flowrates entering and leaving the DMC plant.
Given Reactions:
2𝐢𝐻...
37
Assuming none of the reactants leave the plant, flows set to zero where appropriate:
0 𝑃𝐷𝑀𝐢 1 0 0
0 𝑃𝐢𝑂2 0 1 0
𝐹𝑂2
- 0 ...
38
πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π‘€π‘œπ‘›π‘œπ‘₯𝑖𝑑𝑒: 𝐹𝐢𝑂 βˆ’ 𝑃𝐷𝑀𝐢 βˆ’ 𝑃𝐢𝑂2
= 0
π‘€π‘’π‘‘β„Žπ‘Žπ‘›π‘œπ‘™: 𝐹 𝑀𝑒𝑂𝐻 + 2𝑃𝐷𝑀𝐢 = 0
π‘Šπ‘Žπ‘‘π‘’π‘Ÿ: βˆ’ 𝑃 𝐻2 𝑂 + 𝑃𝐷𝑀𝐢 = 0
π‘†π‘π‘’π‘π‘–π‘“π‘–π‘π‘Žπ‘‘π‘–π‘œπ‘›π‘ :
𝑃𝐷𝑀𝐢 = 1...
39
Appendix G. Level 3 Mole Balances
Figure 2: Level 3 recycle material balance.
π‘†π‘π‘’π‘π‘–π‘“π‘–π‘π‘Žπ‘‘π‘–π‘œπ‘›π‘ :
𝑃𝐷𝑀𝐢 = 150,000
π‘˜π‘”
π‘¦π‘Ÿ
𝑆𝑒𝑙𝑒...
40
Appendix H. MATLAB Script
Appendix H-1. Reactor Conceptual design and optimization
clc, clear, close all
%single condit...
41
Ch2o=52.5;%molar volume of water in mol/L
Cdmc=11.8;%molar volume of DMC in mol/L
q=Fme0/Cme;
%q=((Y(1)+Y(4)+Y(5))/(Cme...
42
a=result(i,:);%redifining initial guess
count=count+1;
result=abs(result);
end
molfrac(i,:)=[result(i,1)/sum(result(i,:...
43
primary_axis=zeros(length(Fresho2),2);
primary_axis(:,1)=Rco;
primary_axis(:,2)=tot_in_mol;
primary_axis(:,3)=tot_out_m...
44
ylabel('Mole Fraction')
set(get(ax(2),'Ylabel'),'string','Flow Rate (mol/s)')
xlabel('Conversion')
legend('MeOH','CO','...
45
while error>10^(-4);
CSTR_func=@(Y)([-Y(1)+Fme0-
((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y...
46
conv=(Fo20-result(i,3))/Fo20;
sel=result(i,4)*.5/(Fo20-result(i,3));
end
Cpme80=22.685; %MeOH Cp at 80C cal/molK
Cpme13...
47
Fo20liq=Ftot0liq*xo20;%initial O2 molar flow in liq
Fco0liq=Ftot0liq*xco0;%initial CO molar flow in liq
Cme=22.2;%molar...
48
-
Y(5)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y
(4)+Y(5))))).*tim...
49
ylabel('Volume (m^3)')
%axis([0,1,0,2500]);
legend('T=80.0C','T=92.5C','T=105.0C','T=117.5C','T=130.0C')
box on
end
%Va...
50
(5))))).*.5.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(
Y(5)/(Y(1)+Y...
51
ylabel('Volume (m^3)')
%axis([0,1,0,250]);
legend('P=10.0atm','P=17.5atm','P=25.0atm','P=32.5atm','P=40.0atm')
box on
e...
52
(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(
Y(1)+Y(4)...
53
figure(14)
plot(convCSTR,selCSTR)
hold all
xlabel('X')
ylabel('S')
legend('MR1=4','MR1=6','MR1=10','MR1=20','MR1=60')
a...
54
(5))))).*2.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1
)/(Y(1)+Y...
55
xlabel('Tau (sec)')
ylabel('X')
legend('MR2=24','MR2=34','MR2=49','MR2=70','MR2=100')
figure(17)
plot(convCSTR,selCSTR)...
56
for i=1:length(tau)
Treact=130+273.15;%temperature in K
%rho=Ptot0/(1);%mol/L
Ptot0bar=Ptot0*1.01325;%total inlet press...
57
-
Y(4)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y
(4)+Y(5))))).*tim...
58
xo20=(Ptot0bar/(MR2+1))/(Kho2);%initial O2 mol frac in liquid
xco0=(MR2*Ptot0bar)/(1+MR2)/(Khco);%initial CO mol frac i...
G10 Final
G10 Final
G10 Final
G10 Final
G10 Final
G10 Final
G10 Final
Upcoming SlideShare
Loading in …5
×

G10 Final

421 views

Published on

  • Be the first to comment

G10 Final

  1. 1. 1 BICC Dimethyl Carbonate Plant Design and Profitability Analysis Charmaine Bennett Sarah Maxel Ye Yuan Team #10 Date Submitted: June 3rd , 2015 Executive Summary Using phosgene to produce polycarbonate is dangerous and environmentally irresponsible. BICC is one of the world’s leading manufacturers of polycarbonate resins, and our business continues to grow by 10% per year; however, our current processes rely on phosgene to provide the carbonate group during the synthesis of polycarbonate. A much less harmful chemical that can also supply the carbonate group is dimethyl carbonate (DMC). To aid BICC in its transition to greener chemical processes without losing its position in the global polycarbonate market, we propose that it would be profitable to construct a plant capable of producing 150 MM kg of DMC per year. DMC would be produced via the oxidation of carbon monoxide with oxygen and methanol catalyzed by CuCl. The reaction occurs in a continuously stirred slurry reactor with a liquid volume of 1.1 m3 , an operating temperature of 130℃, and a constant total pressure of 30 atm. The profitability analysis indicates that the total capitalized investment (TCI) required to finance this undertaking will be $40 MM, with an expected net present value (NPVproj) of $75 MM. Given a positive NPVproj and a rate of return before taxes (ROIBT) of 53%, we conclude that this DMC plant will be a profitable investment. The calculated the NPV% is 18.6%, and the internal rate of return (IRR) is 37%. This NPV% calculated is well above the minimum 10% annual return required to justify an investment, and the high IRR indicates an ideal business venture.
  2. 2. 2 Table of Contents 1. Introduction:..........................................................................................................................................3 2. Plant Design:.........................................................................................................................................3 2.1 Design Overview: ...............................................................................................................................3 2.2 Reactor Design:...................................................................................................................................4 2.3 Process Flow Diagram ........................................................................................................................6 2.4 HYSYS Simulation Flow-sheet ..........................................................................................................7 2.4 Piping and Instrumentation Diagram ..................................................................................................8 2.5 Aspen HYSYS Simulation..................................................................................................................9 2.6 Separation System Design ................................................................................................................10 2.7 Plant Process Control........................................................................................................................11 3. Economic Analysis .............................................................................................................................13 4. Health, Safety & Environmental (HSE) Considerations.....................................................................15 4.1 Materials of Construction .................................................................................................................17 5. Process Alternatives............................................................................................................................17 6. Conclusions:........................................................................................................................................17 Appendix A. Additional Figures.................................................................................................................18 Appendix B. Reactor Modelling and S vs X analysis.................................................................................21 Appendix C. Distillation Design Summary ................................................................................................22 Appendix C-1. Aspen User Interface / Aspen HYSYS Comparison Table............................................22 Appendix C-2. Ternary Phase Diagram for First Distillation Column ...................................................24 Appendix C-3. Ternary Phase Diagram for Second Distillation Column...............................................25 Appendix D. Economic Analysis................................................................................................................26 Appendix D-1. Economic Calculations ..................................................................................................26 Appendix D-2. Economic Spreadsheet ...................................................................................................31 Appendix D-3. IRR Spreadsheet.............................................................................................................32 Appendix D-4. Breakeven Analysis........................................................................................................33 Appendix E. Chemical Properties...............................................................................................................34 Appendix F. Level 2 Molar Flow Rates......................................................................................................36 Appendix G. Level 3 Mole Balances..........................................................................................................39 Appendix H. MATLAB Script....................................................................................................................40 Appendix H-1. Reactor Conceptual design and optimization.................................................................40
  3. 3. 3 1. Introduction: As a versatile polymer product, polycarbonate resin is an important commodity chemical in modern society. It is a vital raw material for [1]1many manufacturing industries including electronic, household utilities, and automotive industries. Currently, BICC relies on highly toxic phosgene to provide the carbonate building blocks necessary for the polycarbonate resin production [3]. Besides the hazardous nature of the reactants, such chemical processes undermine environmental health by producing unsafe byproducts such as HCl. As environmental sustainability continues be a major concern in the chemical industry, it is a necessity for BICC to pursue cleaner, safer, and economical routes to create carbonate monomers as it expands its production [2]. The generation of polycarbonate resins via the synthesis of dimethyl carbonate (DMC) is a clean technology with low-cost raw materials and high production capacity; this route is also capable of meeting the demands of BICC. We believe this process will be a highly beneficial venture to ensure BICC’s dominant position in the global polycarbonate market for the next decade. 2. Plant Design: 2.1 Design Overview: Dimethyl carbonate (DMC) will be produced via the oxidation of carbon monoxide (CO) with oxygen (O2) and methanol (MeOH) in a gas-liquid-solid slurry reactor [Rxn. 1]. Due to its large vapor liquid interfacial area, this reactor type is the ideal choice for a liquid phase reaction with a solid catalyst and two predominately gas-phase reactants. Two reactions will be occurring in the liquid phase of the reaction solution: the desired reaction, formation of DMC [Rxn. 1], and an undesired reaction, formation of carbon dioxide (CO2) [Rxn. 2]. Due to the exothermic nature of both reactions (Ξ”Hrxn1 = -73 kcal/mol, Ξ”Hrxn2 = -68 kcal/mol), the reactor will operate isothermally to prevent run-away reactions. Cuprous chloride (CuCl) as well as small quantities of propriety additives will serve as catalyst for these reactions. The catalyst is insoluble in the reaction mixture, and must be filtered out and recycled back to the reactor for reuse. The catalyst is susceptible to poising if exposed to large quantities of water; therefore, a large molar excess of methanol is necessary to maintain low water concentrations in the reactor. 2𝐢𝐻3 𝑂𝐻 + 1 2 𝑂2 + 𝐢𝑂 β†’ 𝐢𝐻3 βˆ’ 𝑂 βˆ’ (𝐢𝑂) βˆ’ 𝑂 βˆ’ 𝐢𝐻3 + 𝐻2 𝑂 [Rxn. 1]
  4. 4. 4 1 2 𝑂2 + 𝐢𝑂 β†’ 𝐢𝑂2 [Rxn. 2] The reactor inlet stream includes a feed of MeOH, CO, and O2. The O2 fed into the reactor is expected to reach 99% conversion while the unreacted components, CO and MeOH, will be separated and recycled back into the reactor feed to conserve raw material and minimize production costs. Separated DMC will leave the plant at 35 ℃ and 1 atm for storage; separated water will be treated as a waste product, and a waste gas stream of CO and CO2 will be released into the atmosphere. A minimum selectivity of 14% is needed to β€˜break-even’ between the revenues from selling DMC and the cost of raw reactants [Appendix D-4]. We advise operating at 46% selectivity where the maximum economic potential is approximately $40 MM assuming that the prices of MeOH, CO, O2, and DMC remain at $0.49 /kg, $0.18 /kg, $0.38 /kg, and $0.90 /kg respectively. 2.2 Reactor Design: In the conceptual design, the gas-liquid-solid slurry reactor is modelled as a continuously-stirred tank reactor (CSTR). Both reactions occur in the liquid phase, and the amount of CO, O2, and CO2 in the liquid are approximated with Henry’s law. The reactor is characterized by four design variables: operation temperature (Treact), operation pressure (P), inlet MeOH to O2 molar ratio (MR1), and inlet CO to O2 molar ratio (MR2). Allowable operation temperature and pressure ranges are 80-130℃ and 10-40 atm respectively. A minimum MR2 of 24 ensures the O2 concentration in vapor phase remains below the explosion limit of 4 mol%. Rxn. 1 has a higher activation energy and lower pre-exponential factor compared to Rxn. 2; while the heat of reaction for Rxn. 1 has a larger absolute value. This suggests that Rxn. 1 is thermodynamically favored, and Rxn. 2 is kinetically favored. Therefore, in order to increase the selectivity of Rxn. 1, one must increase the operation temperature. This prediction is corroborated by our selectivity (S) vs conversion (X) analysis in MATLAB. It indicates that with a given conversion, higher selectivities can be reached with a higher operating temperature. Although P has minimal effect on the S vs X relationship, increased pressures can reduce the reactor volume, which is economically favorable. The effect MR1 has on the S vs X relationship is non-monotonic, while for MR2 the effect is minimal; however, large MR values lead to high flow rates and over-sized equipment. Given these considerations, the reactor will
  5. 5. 5 operate at 130℃ and a total pressure of 30 atm. As a compromise between high selectivity and low flow rates, a MR1 of 15 is advised. Since MR2 has little effect on S vs X, it is chosen to be 26, a value above the lower safety limit. Furthermore, adiabatic temperature rise calculation reveals that with a feed inlet temperature of 130℃, the outlet temperature can reach 450℃ [Fig. 2 Appendix A]. Therefore, an isothermal reactor is advised. The S vs X relationship at various reactor conditions are below illustrated below. Since pressure and MR2 have minimal impact on the S vs X relationship, they are illustrated as Figure 11 and 12 in Appendix A. Figure 1: Selectivity (S) vs conversion (X) at P = 30 atm, MR1 = 15, MR2 = 26, and various temperatures. For a certain conversion, the higher the temperature, the higher the selectivity Figure 2: S vs X at T = 130℃, P = 30 atm, MR2 = 26, and various MR1. For a given conversion, the selectivities increase with MR1 until MR1 β‰ˆ 20. Then S decreases with increasing MR1. At X=0.99 maximum S occurs when 10 < MR1 < 20
  6. 6. 6 2.3 Process Flow Diagram 6 A E-100: Reactor Feed Preheater 1: Fresh Feed CO 14.6 MT/h $22.0 MM/y 4 E-101: Vap. Effluent & Vapor Recycle Interchanger 8 E-1200: Coln. Feed Preheater 12 T-1200: Water Extraction Distillation Column 7 14 15: Waste Water 3.5 MT/h $1 780 /y 17 P-1200/1200X E-1400: Vap. Recovery Cooler 19 QH -1200 5 2: Fresh Feed O2 14.6 MT/h $22.2 MM/y 7 14 11 K-1000/ K-1000X M CW A-100/A-100X DMC Slurry Reactor Isobaric & Isothermal Total Volume: 1.80 m3 Liquid Volume: 1.08 m3 Temp.: 130 Β°C Pressure: 30 atm 6 B 10 A E-1300: Col. 1300 Feed Preheater T-1300: High Pressure DMC Distillation Column 15 19 P-1300/1300XA-900: Vap. Effluent Flash DrumE-102: Vap. Effluent Cooler 9 10 B 23 25 32: Waste Gas 12.8 MT/h 27 27 28 E-103: Liq. Effluent & Vapor Recycle Interchanger 13 A CW Sat. Steam X-1200: Coln. Feed Deaerator 13 B 24 31 30 XL-1400 Vapor Recovery System E-1301: Product DMC & Waste Water Interchanger QC -1200 18 20 A QC -1300 QH -1300 21 20 B E-1302: DMC Product Cooler 20 C: DMC 99.9 w/w% 17.7 MT/h 22: Liq. Recycle Sat. Steam E-2000: Recycle CO Heater 29 Sat. Steam 26 16: Col. T-1200 Vent 3: Fresh Feed MeOH 14.6 MT/h $53.0 MM/y Figure 3: Detailed process flow sheet with the properties of key variables and process streams
  7. 7. 7 2.4 HYSYS Simulation Flow-sheet Figure 4: HYSYS simulation flow sheet with properties of key process streams
  8. 8. 8 2.4 Piping and Instrumentation Diagram 6 A E-100 1: Fresh Feed CO 4 3: Fresh Feed MeOH E-101 8 E-1200 12 T-1200 7 14 15: Waste Water 17 P-1200/1200X QH -1200 V-8 5 2: Fresh Feed O2 7 V-5 14 11 K-1000/ K-1000X M CW A-100/A-100X DMC Slurry Reactor 6 B 10 A E-1300 T-1300 15 19 P-1300/1300X A-900 E-102 9 10 B 23 32: Waste Gas 27 28 E-103 V-14 13 A CW Sat. Steam X-1200 13 B 24 31 30 XL-1400 E-1301 QC -1200 20 A QC -1300 QH -1300 21 20 B E-1302 22 Sat. Steam E-2000 29 Sat. Steam 26 16: Purge V-4 V-13 V-7 V-13 V-22 V-21 V-1 V-2 V-3 RC 1 FT 2 FT 1 RC 3 FT 3 AC 3 FC 4 AC 1 FC 5 FC 8 LC 8 FC 7 TT 7 FC 6 TT 6 TT 8 V-9 FC 9 LC 9 V-10 FC 10 TT 10 PT 4 V-11 FC 11 PT 11 FC 14 LC 14 V-12 FC 12 SC 12 PT 12 FC 22 AC 22 Sat. Steam TT 19 FC 23 V-18 FC 18 PT 18 FC 15 PC 15 V-16 V-26 FC 26 LT 26 TT 4 TT 5 V-6 V-15 V-19 FC 19 19 V-23 20 C: DMC 99.9 w/w% V-24 FC 24 TT 24 TT 22 E-1400 CW V-17 FC 17 25 TT 17 FC 16 LC 16 V-20 FC 20 LC 20 PT 21 TT 21 FC 21 S-112 FC 13 TT 13 V-25 FC 25 PC 25 Figure 5: Piping and instrumentation diagram for DMC plant
  9. 9. 9 2.5 Aspen HYSYS Simulation Taking the non-idealities of the mixtures into account, the design variables obtained from MATLAB calculations are fine tuned in Aspen HYSYS. Table 1 below compares the key design parameters associated with the reactor generated in MATLAB to those produced in HYSYS simulation. Table 1: Comparison of variables calculated on MATLAB verses the values obtained from the Aspen HYSYS simulation. Design Parameter MATLAB HYSYS Units Fresh Feed Flowrates Mass Flowrate of MeOH 16.2 12.9 MT/h Mass Flowrate of CO 8.9 14.6 MT/h Mass Flowrate of O2 6.7 6.9 MT/h Reactor Specifications Reactor Type Slurry reactor, isothermal, isobaric Reactor Volume (liquid) 1.0 1.1 m3 Temperature 130 130 ℃ Total Pressure 30 30 atm Single Pass Conversion 0.91 0.99 - Single Pass Selectivity 0.66 0.46 - Reactor Inlet Conditions Temperature 130 130 ℃ Pressure 30 30 atm Total Flowrate 260.5 312.2 MT/h Molar Ratio (MeOH to O2) 15.0 15.3 - Molar Ratio (CO to O2) 26.0 26.6 - Reactor Outlet Conditions Temperature 130 130 ℃ Pressure 30 30 atm Total Flowrate 260.5 312.2 MT/h Mass Flowrate of MeOH 84.7 94.0 MT/h Mass Flowrate of CO 142.2 149.7 MT/h Mass Flowrate of O2 0.6 0.1 MT/h Mass Flowrate of DMC 22.8 54.3 MT/h Mass Flowrate of H2O 4.6 3.9 MT/h Mass Flowrate of CO2 5.7 10.1 MT/h
  10. 10. 10 2.6 Separation System Design There are two streams exiting our reactor due to the two-phases present in the reactor. The liquid stream is comprised of methanol, water and DMC in addition to dissolved carbon oxides, and a vapor phase predominately comprised of carbon oxides (COx). The presence of two minimum boiling azeotropes (water-DMC and methanol-DMC) in the reactor effluent streams necessitated the use of pressure swing distillation to obtain DMC at the specified 99.8 w/w% purity [4]. The first column operates at 1 atm and removes the water, while the second column yields DMC. High pressure flash drums and a package vapor recovery system were used to extract and recycle CO to the reactor. The major constraint regarding the separation of the liquid reactor outlet stream is the presence of two low-boiling point azeotropes [5]. The liquid effluent is first saturated and then fed to the first column in the distillation train. This column produces a waste water bottoms stream, and a near azeoptropic methanol-DMC stream as the distillate at atmospheric pressure. It should be noted that COx needed to be removed from the liquid reactor effluent using a short separating column, prior to distillation. Represented by vessel X-1200, this deaerator produces a saturated feed stream to the first column with negligible concentrations of COx. The vapor effluent is directed to the vapor recovery system for further purification. X-1200 also assists in the removal of residual oxygen, and thereby reduced the rate of corrosion in downstream pipes and equipment. A small vent stream leaving the first column purges the carbon oxides dissolved in the stream and is then directed to the vapor recovery system. Atmospheric pressure was used in the initial column because higher column pressures result in unreasonably high separation temperatures and operations costs. Pressure swing was utilized to facilitate the separation of the MeOH/DMC azeotrope by crossing the distillation boundary. The distillate is pumped to the second column at 11.5 atm, in which a high purity stream of DMC is produced as the bottoms and a distillate near the corresponding azeotropic composition, at this pressure. This stream is then pumped and recycled to the reactor to recover unreacted MeOH. The presence of DMC in the recycle stream improves the ease of separation by shifting the compositions of subsequent streams in the distillation system closer to the distillation boundary as seen on the residue curves. The main goals of the vapor recovery system are to minimize of fresh feed of carbon monoxide and purge CO2 from the plant. The CO and CO2 mixture is separated into a high purity
  11. 11. 11 CO stream which is recycled to the reactor, a waste gas stream of carbon dioxide, and a liquid stream which merges with the distillate of the first column. A possible design for the vapor recovery system consists of an AMDEA absorber, and a heated flash for CO2 removal [6]. 2.7 Plant Process Control To ensure the plant operates within the design specifications and maintain safety, control systems are implemented throughout the process. Such key control variables includes the molar ratios of MeOH to O2, and CO to O2, as they affect the reactor efficiency by altering the vapor to liquid ratio. In addition, in order to avoid explosion, control systems must ensure the mole fraction of O2 remains below 4% in all vapor streams. Furthermore, pressure relief valves should be installed to prevent over-pressurization. The control system must also meet the conversion and the productions rate constraints despite the small fluctuations in the flow rate an purities of the reactor feeds. Therefore, the nominal reactor pressure and temperature are specified and maintained. Constraints associated with the process are tabulated below. Table 2: Process control constraints 1 O2 mole fraction in vapor phase must be less than or equal to 4% 2 MeOH/O2 molar ratio at the reactor inlet must be equal to 15, within 3% tolerance 3 CO/O2 molar ratio at the reactor inlet must be equal to 26, within 3% tolerance 4 Mass flow rate of DMC in the product stream must be equal to 150MM kg/yr, within 3% tolerance 5 Mass fraction of DMC in the product stream must be no less than 99.8 w/w% 6 Temperature at the reactor inlet must be equal to 130 ℃ 7 Pressure into and out of the reactor must be equal to 30 atm 8 All streams entering pumps must be pure liquid 9 All streams entering compressors must be pure vapor 10 Liquid level in reactor must be maintained above operational threshold and below flooding limit 11 Liquid levels in both distillation columns must stay below the flooding limit Controlled and manipulated variables and their corresponding mechanismes for plant- wide process control are tabulated below.
  12. 12. 12 Table 3: Proposed control system scheme and associated control loops for the DMC plant. Loop Number Controller Type Controlled Variable CV Manipulated Variable MV Valve 1 Cascade Molar Ratio of CO/O2 MR 1 Flowrate of Fresh CO V1 Feedback Composition of Reactor Feed Molar Ratio of CO/O2 V1 2 Feedback Molar Ratio of CO/O2 MR 1 Flowrate of Fresh O2 V2 3 Cascade Molar Ratio of MeOH/O2 MR 2 Flowrate of Fresh MeOH V3 Feedback Composition of Reactor Feed Molar Ratio of MeOH/O2 MR 2 V3 4 Feedback Temp. of Reactor Feed Flowrate of saturated steam to E-100 (Reactor Feed Preheater) V4 Feedback Reactor (A-100) P. Flowrate of saturated steam to E-100 (Reactor Feed Preheater) V4 5 Feedback Reactor (A-100) Temp. Flowrate of cooling water steam to A-100X (Reactor Heat Exchanger) V5 6 Feedback Temp. of Stream 27 (Vap. Recycle) Flowrate of Reactor Vap. Effluent V6 7 Feedback Temp. of Stream 9 (A-900: Feed to Vap. Effluent Flash Drum) Flowrate of cooling water to E-102 (Reactor Vap. Effluent Cooler) V7 8 Feedback Reactor Liq. level Flowrate of 6 A: Liq. Reactor Effluent V8 Feedback Temp. of Stream 6 B Flowrate of 6 A: Liq. Reactor Effluent V8 9 Feedback Reactor Liq. level Flowrate of 10 A: Liq. Effluent of A-900: Vap. Effluent Flash Drum V9 10 Feedback Temp. of Stream 12 (Feed to Pre- Distillation Deaerator) Flowrate of saturated steam to E-1200 (Column T-1200 Feed Preheater) V10 11 Feedback P. of A-900: Feed to Vap. Effluent Flash Drum Vap. flowrate exiting A-900 V11 12 Feedback P. of Stream 23 (Recovered Vap. from Deaerator) Flowrate of stream exiting compressor K-1000 Speed of K-1000X (Compressor Motor) V12 13 Feedback Temp. of Recycle CO Flowrate of saturated steam to E-2000 (Recycle CO Heater) V13 14 Feedback Liq. level in X-1200: Pre-distillation Deaerator Flowrate of 13 A: Liq. Effluent of X-1200 V14 15 Feedback P. of Stage 1 in T-1200: Water Extraction Distillation Coln. Flowrate of cooling water to T-1200 Condenser V15 16 Feedback Liq. level in T-1200 Condenser Flowrate of 13 A: Liq. Effluent of T-1200 Condenser V16 17 Feedback Temp. of Feed to XL-1400: Vap. Recovery system Flowrate of cooling water to E-1400: Vap. Recovery Pre-Cooler V17 18 Feedback P. of Stream 18: Feed to Coln. T-1300 Flowrate of Stream 19: Feed to Coln. T-1300 V18 19 Feedback Temp. of Stream 19 (Feed to Feed to Coln. T-1300) Flowrate of saturated steam to E-1300 (Column T-1300 Feed Preheater) V19 20 Feedback Liq. level in T-1300 Condenser Flowrate of 13 A: Liq. Reflux of T-1300 V20 21 Feedback Temp. & P. of Stage 1 in T-1300: HP DMC Distillation Coln Flowrate of cooling water to T-1300 Condenser V21 22 Cascade Temp. of Stream 20 A: Bottoms Stream of Coln. T-1300 Flowrate of saturated steam to Column T-1300 reboiler V22 Composition of 20 A: Bottoms Stream of Coln. T-1300 Flowrate of saturated steam to Column T-1300 reboiler V22 23 Cascade Flowrate of Product DMC Molar Ratio of CO/O2 & of MeOH/ O2 V23 24 Feedback Temp. of Waste Gas Stream to the environment Flowrate of Vap. exiting XL-1400 Vaoor recovery system V24 25 Feedback P. of Stream 22: Liq. Recycle to Reactor Flowrate of Liq. exiting P-1300 V25 26 Feedback Liq. level in last tray in T-1200 Flowrate of T-1200 bottoms stream V26
  13. 13. 13 3. Economic Analysis A cost analysis was conducted to determine the profitability and economic feasibility of our conceptual design. For the current reactor conditions, conversion, and selectivity, our annual profit before taxes (PBT) is $21 MM. The revenue generated from producing DMC is $135 MM per year [Appendix D-1]. Our plant has an economically feasible ROIBT of 53% and our NPV% is 18.6%. The total capital investment (TCI) required is $40 MM. The yearly cost of fresh feed reactants, $95 MM, is our largest expense. The following tables detail the total investment and the operating costs required to finance our DMC plant. Table 4: Installed costs of each piece of equipment are listed. Equipment Cost [$MM] Reactor 0.015 Separations System 4.3 Compressors 4.0 Flash Drum 0.23 Heat Exchangers 0.64 Total Equipment Costs 13 Fixed Capital 21 Total Investment 39 Table 5: Operating costs of the DMC plant are listed. Operating Costs Cost [$MM/year] Separations Unit 7.8 Fresh Feed of Oxygen 22 Fresh Feed of Methanol 53 Fresh Feed of Carbon Monoxide 22 Steam for Heat Exchangers 0.77 Coolant for Heat Exchangers 0.04 Chilled Water for Heat Exchangers 4.2 Electricity for Compressors 0.8 Vapor Recovery 2.0 Waste Water 0.0018 Yearly Operating Cost 113 Working Capital 16 Several assumptions were made in order to produce the economic analysis for our design. The total investment (TI) was calculated as the sum of the start-up capital (SU), the working capital (WC) and the fixed capital (FC). The start-up (SU) cost was estimated as 10% of FC. The working capital (WC) was the cost of two months’ worth of raw feed materials (oxygen, methanol, and carbon monoxide). The fixed capital investment (FC) is normally calculated as the sum of the direct and indirect costs; for our analysis the direct cost was calculated as the sum of
  14. 14. 14 the ISBL and the OSBL and the indirect cost was estimated as 30% of the direct costs. Both the ISBL and the OSBL were estimated with a contingency of 25% and the OSBL was estimated as 40% more than the ISBL costs. ISBL was determined by summing the installed cost of each piece of equipment [Appendix D-1]. These simplifications allowed us to calculate TI with the following expression: 𝑇𝐼 = 2.5 Γ— 𝐼𝑆𝐡𝐿 + π‘ŠπΆ (1) The remainder of our profitability parameters was calculated using a Discounted Cash Flow Analysis, which is detailed in Appendix D-2. Aside from the cost of fresh feeds, the largest expense for both operating and installment costs is the separations units; therefore minimizing costs associated with the distillation columns is critical to maximizing profit. Note that rough estimations of profitability (Figure 6) from HYSYS at lower pressures suggest that 11 atm is not the optimal pressure; a more detailed analysis is needed to balance the various factors in determining optimal conditions. Figure 6: Operating pressure in the DMC distillation column has a significant impact on profitability. Above pressures of 11.5 atm in the second column, all economic parameters (NPV%, ROIBT,%, NPVproject, and TCI) start to indicate lower profit. We recommend that lower operating pressures for the DMC distillation column be explored in order to reduce operation and installment costs associated with the reboiler and condenser. The available operation pressures are limited by the azeotropic composition of DMC and MeOH at each respective pressure. However, due to a high recycle flow of DMC, the current design is sufficiently far away from the distillation boundary.
  15. 15. 15 Figure 7: Sensitivity analysis of the net present value versus conversion. Tax rate varied from 25% to 48%. Figure 8: Sensitivity analysis of the net present value versus conversion. Price of DMC varied to reflect change in investment risk. According to the sensitivity analysis illustrated in Figures 7 and 8, the tax rate has a significant impact on the risk associated with this investment. However, even with a maximum tax rate of 48%, this design is still profitable. As shown in Figure 8, a 10% drop in the selling price of DMC would cause the NPV% to drop to approximately 10%, which is still economically justifiable. This indicates the economic robustness of this design. If a competitor entered the DMC market or the global demand of polycarbonate resins decreased, the profitability of our plant would continue to be positive. 4. Health, Safety & Environmental (HSE) Considerations One of the major process concerns of the proposed plant is the high flammability, explosion hazards, and toxicity of the products in the plant. Dimethyl carbonate, carbon monoxide, oxygen and methanol are extremely flammable and their can form explosive mixtures with air. As a result, regular maintenance should be scheduled to checks for leaks, wear and corrosion of the fittings in the plant. In addition, the exothermicity of the both reactions may give rise to explosions in the reactor in the event of uncontrolled temperature increases. It is therefore imperative for the cooling system for the reactor to be fully operational at all times, and multiple/redundant control schemes are advised [6]. DMC and methanol are incompatible with oxidizing agents such as acids, chlorates, nitrates and peroxides, therefore the ingress of oxygen into high purity streams of these species should be avoided [6]. This hazard also required that concentrations of oxygen in all streams
  16. 16. 16 across the plant are kept below 4 mol%. Oxygen was also selected as the limiting reagent to restrict its presence to the front-end of the plant, and to minimize its concentrations downstream the reactor. The presence of dissolved oxygen significantly increases the rate of corrosion which would lead to increased maintenance costs and specialty materials needed for all pipes and vessels. It is necessary that the CO to O2 ratio entering the reactor be greater than 24 to avoid the formation of explosive mixtures. Due to the high risks to employee and environmental safety within and around the plant and BICC’s industrial complex, tight control loops must be put in place to stop the process if the molar ratio drops below the minimum for safe operation. The catalyst used for the desired reaction chemistry is comprised of insoluble, finely- dispersed cuprous chloride solid particle with proprietary additives in minute concentrations. The chloride species generated in the process has the potentially to rapidly increase the rate of corrosion within the plant, exacerbated but the presence of water [6]. While losses in catalytic activity are inevitable over the lifetime of the plant, significant fouling will require expensive and lengthy solutions to continue operations. As a result, the concentration of liquid water entering the reactor was minimized using methanol. However, a compromise was reached between the liquid molar ratio and the flammability of methanol. In the event of catalyst wetting, and the activity has declined to critical levels, the plant must be shut down to replace the catalyst. Solid particle traps and filters can be used to minimize catalyst lost and wear via friction. With respect to the temperature profile in the reactor, the liquid and vapor inlet streams run counter currently from the top and bottom of the vessel to minimize stagnant volumes and recirculation eddies that would promote the formation of hot-zones. With regards to the health of the employees at the plant, stringent precautions should be enforced as many of the chemicals on the plant are either highly toxic or flammable. The storage areas should be well ventilated, and the tanks should be grounded and fitted with deluge systems. Methanol, oxygen and carbon monoxide leaks/ releases should require immediate evacuation due to the asphyxiant hazard [7]. All work areas designated to have recognized chemical carcinogens should have appropriate hazard warnings, and higher levels of personal protective equipment should be enforced. These areas include the areas around the storage tanks of the raw material and final products, and around the associated piping. In addition, the waste water should be considered a hazardous material.
  17. 17. 17 4.1 Materials of Construction Stainless steels and hastelloy are used in almost all areas of the plant, with the exception of the fresh slurry reactor [9]. The corrosiveness of liquids and solid catalyst particles would cause stainless steel pipes to corrode at a rate of < 500 πœ‡m per year [Appendix E]. Due to the criticality of this vessel to plant operations, a molybdenum alloy should be used, as it provides greater protections against rate corrosion and because it greater thermal stability at the reactor conditions [7] [8]. 5. Process Alternatives Theoretically, a cascade of multiple CSTRs behaves like a plug flow reactor, and should provide higher conversion with smaller volume. As an alternative process, the reactor was modelled a series of 3 CSTRs with identical volumes. It was observed that with the same total volume, three separate CSTRs produced nearly identical S vs X relationships as a single CSTR. Despite the fact that the three CSTRs in series produced higher conversion than that from a single CSTR at a given residence time, this advantage quickly diminishes above 20s of residence time. This advantage can hardly be justified with the increased cost associated with additional reactors. For graphical comparisons of the designs, please see Figure 9 and 10 in Appendix A. To break the binary azeotropes between methanol and DMC in our system, pressure swing distillation was utilized. However, an alternative separation design can incorporate entrainers that alter the behavior of the azeotropic species. Suitable entrainers for this system include aromatic hydroxy compounds, alkyl aryl ethers, and dialkyl carbonates [12]. 6. Conclusions: An ROIBT of 53% and an NPV of $75 MM indicates a profitable economic outlook for our conceptual design. The NPV% of 18.6% is an acceptable value given the amount of risk incurred for investing in a commodity chemical. A high IRR of 37% also suggests that DMC production will be valuable investment. At this time we recommend a further assessment of the design profitability because of its strong investment potential and green chemistry.
  18. 18. 18 Appendix A. Additional Figures Figure 1: Selectivity (S) versus reactor conversion (X) at reactor temperature of 130 ℃, total pressure of 30 atm, MR1 of 15, MR2 of 26. Selectivity decreases with increasing conversion, within a small window (65%< S<71%) Figure 2: Adiabatic temperature rise analysis: Reactor inlet temperature (X-axis) versus reactor outlet temperature (Y-axis). Due to the exothermic nature of the reactions, adiabatic condition results in dangerously high outlet temperature if the inlet temperature is 130 ℃ Figure 3: Flow rate of fresh O2, recycle flow rate of CO, and total moles in and out of the reactor at reactor temperature of 130 ℃, total pressure of 30 atm, MR1 of 15, MR2 of 26. Figure 4: Mole fraction of each component entering the separation system versus the reactor conversion at reactor temperature of 130 ℃, total pressure of 30 atm, MR1 of 15, MR2 of 26. (MeOH and CO are on the left y-axis) According to Figure 3, the total flow rate of CO in the recycle stream, as well as total flows out of the react decrease slightly as conversion increases. The fresh feed rate of oxygen required to produce the required amount of DMC increases as conversion increases. As seen in Figure 4, the amount of DMC exiting the reactor maximizes at maximum conversion. Therefore, operating the reactor at conversions very close to 100% is a reasonable choice.
  19. 19. 19 Figure 5: Volume versus conversion at various reactor temperatures. P=30atm, MR1=15, MR2=26 Figure 6: Volume versus conversion at various pressures. T=130 ℃, MR1=15, MR2=26 Figure 7: Volume versus conversion at various MR1 values. T=130 ℃, P=30atm, MR2=26 Figure 8: Volume versus conversion at various MR2 values. T=130 ℃, P=30atm, MR1=15 Modelling the reactor as three equal volume CSTRs in series has indicates that Although multi- CSTR design offers slightly faster approach to 100% conversion, and higher selectivity at given conversion, the advantage is negligible at reasonably longer time scales Figure 9: Conversion versus residence time for a single CSTR and 3 CSTRs with identical volume in series. Higher conversion at same residence time, the advantage is only visible at very short time scales. Figure 10: Selectivity versus conversion for the single CSTR and multi-CSTR design.
  20. 20. 20 Figure 11: S vs X at T = 130℃, MR1 = 15, MR2 = 26, and various pressures. Pressure has minimal effect on S vs X. Figure 12: S vs X at T = 130℃, P = 30 atm, MR1 = 15, and various MR2. Molar ratio of CO to O2 at the inlet has minimal effect on S vs X.
  21. 21. 21 Appendix B. Reactor Modelling and S vs X analysis Equations 1-4 below show the reaction rate and the corresponding rate constants: π‘Ÿ1 = π‘˜1 𝐢 𝑀𝑒 2 𝐢 𝑂2 0.5 Eqn. 1 π‘Ÿ2 = π‘˜2 𝐢 𝑂2 0.5 Eqn. 2 π‘˜1 = 1.4 Γ— 1011 exp[βˆ’ 24000π‘π‘Žπ‘™/π‘”π‘šπ‘œπ‘™π‘’ 𝑅𝑇 ] Eqn. 3 π‘˜2 = 5.6 Γ— 1012 exp[βˆ’ 22700π‘π‘Žπ‘™/π‘”π‘šπ‘œπ‘™π‘’ 𝑅𝑇 ] Eqn. 4 Where π‘Ÿ1 and π‘Ÿ2 are reaction rates for Rxn. 1 and Rxn. 2, respectively. The unites for rates are mol/(L s) The reactor S vs X analysis is performed with the following algorithm: 1. Fix reactor conditions: T, Ptot, MR1, and MR2 2. Evaluate rate constants k1 and k2 at the selected T 3. Fix arbitrary O2 flow rate at the inlet at n0 4. Calculate the initial flow rates of MeOH, CO, and O2 based on MR1 and MR2 5. Pick residence time 𝜏 6. Solve reactor design equation a-f: a. 𝐹 𝑀𝑒𝑂𝐻 = 𝐹 𝑀𝑒𝑂𝐻0 βˆ’ 2π‘žπœπ‘˜1 ( 𝜌𝐹 𝑀𝑒𝑂𝐻 𝐹 𝑀𝑒𝑂𝐻+𝐹 𝐷𝑀𝐢+𝐹 𝐻2𝑂 ) 2 ( π‘ƒπ‘‘π‘œπ‘‘ 𝜌𝐹 𝑂2 𝐾 𝐻𝑂2(𝐹 𝑂2+𝐹𝐢𝑂+𝐹𝐢𝑂2) ) 1 2 b. 𝐹𝐢𝑂 = 𝐹𝐢𝑂0 βˆ’ π‘žπœ(π‘˜1 ( 𝜌𝐹 𝑀𝑒𝑂𝐻 𝐹 𝑀𝑒𝑂𝐻+𝐹 𝐷𝑀𝐢+𝐹 𝐻2𝑂 ) 2 ( π‘ƒπ‘‘π‘œπ‘‘ 𝜌𝐹 𝑂2 𝐾 𝐻𝑂2(𝐹 𝑂2+𝐹𝐢𝑂+𝐹𝐢𝑂2) ) 1 2 + π‘˜2 ( π‘ƒπ‘‘π‘œπ‘‘ 𝜌𝐹 𝑂2 𝐾 𝐻𝑂2(𝐹 𝑂2+𝐹𝐢𝑂+𝐹𝐢𝑂2) ) 1 2 ) c. 𝐹𝑂2 = 𝐹𝑂20 βˆ’ 1 2 π‘žπœ(π‘˜1 ( 𝜌𝐹 𝑀𝑒𝑂𝐻 𝐹 𝑀𝑒𝑂𝐻+𝐹 𝐷𝑀𝐢+𝐹 𝐻2𝑂 ) 2 ( π‘ƒπ‘‘π‘œπ‘‘ 𝜌𝐹 𝑂2 𝐾 𝐻𝑂2(𝐹 𝑂2+𝐹𝐢𝑂+𝐹𝐢𝑂2) ) 1 2 + π‘˜2 ( π‘ƒπ‘‘π‘œπ‘‘ 𝜌𝐹 𝑂2 𝐾 𝐻𝑂2(𝐹 𝑂2+𝐹𝐢𝑂+𝐹𝐢𝑂2) ) 1 2 ) d. 𝐹 𝐷𝑀𝐢 = π‘žπœπ‘˜1 ( 𝜌𝐹 𝑀𝑒𝑂𝐻 𝐹 𝑀𝑒𝑂𝐻+𝐹 𝐷𝑀𝐢+𝐹 𝐻2𝑂 ) 2 ( π‘ƒπ‘‘π‘œπ‘‘ 𝜌𝐹 𝑂2 𝐾 𝐻𝑂2(𝐹 𝑂2+𝐹𝐢𝑂+𝐹𝐢𝑂2) ) 1 2 e. 𝐹 𝐻2𝑂 = π‘žπœπ‘˜1 ( 𝜌𝐹 𝑀𝑒𝑂𝐻 𝐹 𝑀𝑒𝑂𝐻+𝐹 𝐷𝑀𝐢+𝐹 𝐻2𝑂 ) 2 ( π‘ƒπ‘‘π‘œπ‘‘ 𝜌𝐹 𝑂2 𝐾 𝐻𝑂2(𝐹 𝑂2+𝐹𝐢𝑂+𝐹𝐢𝑂2) ) 1 2 f. 𝐹𝐢𝑂2 = π‘žπœπ‘˜2 ( π‘ƒπ‘‘π‘œπ‘‘ 𝜌𝐹 𝑂2 𝐾 𝐻𝑂2(𝐹 𝑂2+𝐹𝐢𝑂+𝐹𝐢𝑂2) ) 1 2 Where 𝜌 = 𝜌 𝑀𝑒𝑂𝐻 𝐹 𝑀𝑒𝑂𝐻+𝜌 𝐷𝑀𝐢 𝐹 𝐷𝑀𝐢+𝜌 𝐻2𝑂 𝐹 𝐻2𝑂 𝐹 𝑀𝑒𝑂𝐻+𝐹 𝐷𝑀𝐢+𝐹 𝐻2𝑂 and πœŒπ‘– are the molar densities of the liquid species (mol/L); π‘ž is the volumetric flow rate of the liquid species, and π‘ž = 𝐹 𝑀𝑒𝑂𝐻+𝐹 𝐷𝑀𝐢+𝐹 𝐻2𝑂 𝜌 ; and 𝐾 𝐻𝑂2 is Henry’s constant for O2 7. Calculate selectivity (S) and conversion (X) 8. Calculate the liquid volumetric flow rate at the inlet via the following equation: π‘žπ‘–π‘›π‘™π‘’π‘‘ = 𝑃𝐷𝑀𝐢 0.5(𝑆 Γ— 𝑋)(𝑀𝑅1 + 1)𝜌 Where 𝑃𝐷𝑀𝐢 is the target DMC production rate in mol/s 9. Compute reactor volume: 𝑉 = 𝜏 π‘žπ‘–π‘›π‘™π‘’π‘‘ 10. Increment residence time 𝜏 repeat from step 5 until X is sufficiently close to 1
  22. 22. 22 Appendix C. Distillation Design Summary Appendix C-1. Aspen User Interface / Aspen HYSYS Comparison Table Table 1: Comparison of distillation column variables calculated from conceptual designs on Aspen Plus with the values obtained from the Aspen HYSYS simulation. Design Parameter Aspen Plus HYSYS Units T-1200: Water Extraction Column Number of Theoretical Stages 14.3 14 - Reflux Ratio 1.0 1.0 - Reboil Ratio 25.7 23.3 - V/F - Distillate Temperature 64.4 63.7 Β°C Distillate Composition - CO - O2 - CO2 - H2O - DMC - MeOH 0.0 0.0 0.0 0.0 0.17 0.82 0.0 0.0 0.0 0.6 17.0 82.5 Mol % Bottoms Temperature 88.6 99.1 Β°C Bottoms Composition - CO - O2 - CO2 - H2O - DMC - MeOH 0.0 0.0 0.0 93.0 1.0 7.0 0.0 0.0 0.0 99.3 0.0 0.7 Mol % Vent Temperature 63.7 Β°C Vent Composition - CO - O2 - CO2 - H2O - DMC - MeOH 1.6 0.0 0.1 0.2 15.5 82.5 Mol % Condenser Duty 0.25 GJ/h Reboiler Duty 0.19 GJ/h
  23. 23. 23 T-1300: High Pressure DMC Column Number of Theoretical Stages 19 19 - Reflux Ratio 1.4 1.4 - Reboil Ratio 34.2 45.4 - V/F 2.25 - Distillate Temperature 142.1 140.8 Β°C Distillate Composition - CO - O2 - CO2 - H2O - DMC - MeOH 0.0 0.0 0.0 0.6 12.0 87.4 0.0 0.0 0.0 0.6 12.1 87.3 Mol % Bottoms Temperature 190.7 189.0 Β°C Bottoms Composition - CO - O2 - CO2 - H2O - DMC - MeOH 0.0 0.0 0.0 0.03 99.8 0.1 0.0 0.0 0.0 0.0 100.0 0.0 Mol % Condenser Duty 0.63 0.24 GJ/h Reboiler Duty 0.54 0.23 GJ/h
  24. 24. 24 Appendix C-2. Ternary Phase Diagram for First Distillation Column Figure 1: Ternary phase diagram for the Water Extraction Distillation Column with distillation boundary and distillation profiles.
  25. 25. 25 Appendix C-3. Ternary Phase Diagram for Second Distillation Column Figure 2: Ternary phase diagram for the High Pressure Distillation Column with distillation boundary and distillation profiles.
  26. 26. 26 Appendix D. Economic Analysis Appendix D-1. Economic Calculations Revenue (R) = $135 MM Dimethyl Carbonate (DMC) Production: 150 𝑀𝑀 π‘˜π‘” π‘œπ‘“ 𝐷𝑀𝐢 π‘¦π‘’π‘Žπ‘Ÿ Γ— $0.90 π‘˜π‘” π‘œπ‘“ 𝐷𝑀𝐢 = $135 𝑀𝑀/π‘¦π‘’π‘Žπ‘Ÿ Cost (C) = $ 137 MM Raw Oxygen Flow Rate: 7000 π‘˜π‘” π‘œπ‘“π‘‚2 β„Žπ‘Ÿ Γ— 8400 β„Žπ‘Ÿ 1 π‘¦π‘’π‘Žπ‘Ÿ Γ— $0.38 π‘˜π‘” π‘œπ‘“ 𝑂2 = $22 𝑀𝑀 Raw Carbon Monoxide Flow Rate: 1.4 Γ— 104 π‘˜π‘” π‘œπ‘“πΆπ‘‚ β„Žπ‘Ÿ Γ— 8400 β„Žπ‘Ÿ 1 π‘¦π‘’π‘Žπ‘Ÿ Γ— $0.18 π‘˜π‘” π‘œπ‘“ 𝐢𝑂 = $22 𝑀𝑀 Raw Methanol Flow Rate: 1.3 Γ— 104 π‘˜π‘” π‘œπ‘“π‘‚2 β„Žπ‘Ÿ Γ— 8400 β„Žπ‘Ÿ 1 π‘¦π‘’π‘Žπ‘Ÿ Γ— $0.49 π‘˜π‘” π‘œπ‘“ 𝑀𝑒𝑂𝐻 = $55 𝑀𝑀 𝑆𝑒𝑙𝑒𝑐𝑑𝑖𝑣𝑖𝑑𝑦 = 0.46 πΆπ‘œπ‘›π‘£π‘’π‘Ÿπ‘ π‘–π‘œπ‘› = 98.9% 𝑀𝑅1 = 14.8 𝑀𝑅2 = 26.6 Total Coolant Flow Rate:
  27. 27. 27 πΉπ‘π‘œπ‘œπ‘™ = 𝑄 𝐢 𝑐 𝑝 Γ— βˆ†π‘‡π‘ Table 1: Coolant flowrates calculated. Cooler 𝑄 𝐢 [πΎπ‘Š] 𝑐 𝑝 [ 𝐾𝐽 π‘˜π‘”β„ƒ ] βˆ†π‘‡π‘[℃] πΉπ‘π‘œπ‘œπ‘™ [ π‘˜π‘” β„Žπ‘Ÿ ] E-1302 1467 4.179 20 6.3 Γ— 104 Condenser 1 6.7 Γ— 104 4.179 20 2.8 Γ— 106 Condenser 2 6.4 Γ— 104 4.179 20 2.8 Γ— 106 βˆ‘ πΉπ‘π‘œπ‘œπ‘™ 𝑖 πŸ• π’Š Γ— πΆπ‘œπ‘œπ‘™π‘Žπ‘›π‘‘ π‘ƒπ‘Ÿπ‘–π‘π‘’ = 5.7 Γ— 106 π‘˜π‘” π‘œπ‘“ π‘π‘œπ‘œπ‘™π‘Žπ‘›π‘‘ π‘¦π‘’π‘Žπ‘Ÿ ( $0.08 1000 π‘˜π‘” π‘œπ‘“ π‘π‘œπ‘œπ‘™π‘Žπ‘›π‘‘ ) = $3.8 𝑀𝑀/π‘¦π‘’π‘Žπ‘Ÿ Total Steam Flow Rate for Heat: πΉβ„Žπ‘’π‘Žπ‘‘ = 𝑄 𝐻 βˆ†π»π‘ π‘‘π‘’π‘Žπ‘š Table 2: Steam flow rates for heating calculated. Heater 𝑄 𝐻 [πΎπ‘Š] βˆ†π»π‘ π‘‘π‘š [ 𝐾𝐽 π‘˜π‘” ] πΉπ‘ π‘‘π‘’π‘Žπ‘š [ π‘˜π‘” β„Žπ‘Ÿ ] E-100 2064 1960 3.8 Γ— 103 E-1200 1.5 Γ— 104 1960 2.8 Γ— 104 E-2000 2690 1960 4.9 Γ— 103 E-1400 522 1960 9.6 Γ— 102 E-1300 9935 1960 1.8 Γ— 104 Reactor 2.3 Γ— 104 1960 4.2 Γ— 104 Reboiler 1 5.2 Γ— 104 1960 9.6 Γ— 104 Reboiler 2 6.5 Γ— 104 1960 1.2 Γ— 105 βˆ‘ πΉβ„Žπ‘’π‘Žπ‘‘ 𝑖 πŸ“ π’Š Γ— π‘†π‘‘π‘’π‘Žπ‘š π‘ƒπ‘Ÿπ‘–π‘π‘’ = 3.1 Γ— 105 π‘˜π‘” π‘œπ‘“ π‘ π‘‘π‘’π‘Žπ‘š π‘¦π‘’π‘Žπ‘Ÿ ( $0.08 1000 π‘˜π‘” π‘œπ‘“ π‘ π‘‘π‘’π‘Žπ‘š ) = $5.8 𝑀𝑀/π‘¦π‘’π‘Žπ‘Ÿ Total Chilled Water: β„Žπ‘’π‘Žπ‘‘ π‘™π‘œπ‘Žπ‘‘ = 1.0 Γ— 108 π‘˜π½ β„Žπ‘Ÿ
  28. 28. 28 1.0 Γ— 108 π‘˜π½ β„Žπ‘Ÿ Γ— 8400 β„Žπ‘Ÿ 8400 Γ— ( $4.9 𝐺𝐽 ) = $4.2 𝑀𝑀 π‘¦π‘’π‘Žπ‘Ÿ Waste Water: 3.5 Γ— 103 π‘˜π‘” π‘œπ‘“ π‘€π‘Žπ‘ π‘‘π‘’ π‘¦π‘’π‘Žπ‘Ÿ Γ— $0.06 1000 π‘˜π‘” π‘œπ‘“ π‘π‘œπ‘œπ‘™π‘Žπ‘›π‘‘ = $1.7 Γ— 103 /π‘¦π‘’π‘Žπ‘Ÿ Profit Before Taxes = $ 21 MM 𝑃𝐡𝑇 = 𝑅 βˆ’ 𝐢 Fixed Capital (FC) = $21 MM 𝐹𝐢 = 2.28 Γ— 𝐼𝑆𝐡𝐿 ISBL(Installed Cost)= $9 MM Installed Cost Separator Columns: $ 9.2 Γ— 105 Table 3: Values listed were used to cost distillation columns. πΆπ‘œπ‘™π‘’π‘šπ‘› 𝑐0 [ π‘š β„Žπ‘Ÿ ] 𝑉 [ π‘˜π‘šπ‘œπ‘™ β„Ž ] 𝑁 𝐻0 [π‘š] 𝐷 𝑇 [π‘š] 𝐻 [π‘š] πΆπ‘œπ‘ π‘‘ [$] 1 329 3500 14 0.46 6.6 13 1.9 Γ— 105 2 329 300 19 0.46 4.1 18 1.4 Γ— 105 π΄π‘Ÿπ‘’π‘Ž = π‘€πœ √ πœŒπœ„ 𝜌 𝜈 1 πœ™ π‘“π‘™π‘œπ‘œπ‘‘ 𝑐0 ( 𝐴 𝐴 𝑛 ) 0.8 𝑉 𝐷 𝑇 = 2 ( 𝐴 πœ‹ ) 0.5 𝐻 = 2𝑁 Γ— 𝐻0 + 𝐻0 𝐼𝐢 = ( 𝑀&𝑆 280 ) 101.9 𝐷 𝑇 1.066 𝐻0.82 + ( 𝑀&𝑆 280 ) 4.7 𝐷 𝑇 1.55 𝐻 𝐹𝑐 𝑀&𝑆 = 1600 π‘€πœ = 42 𝑔 π‘šπ‘œπ‘™
  29. 29. 29 𝜌 𝜈 = 1.5 π‘˜π‘”/π‘š3 πœŒπœ„ = 829 π‘˜π‘”/π‘š3 πœ™ π‘“π‘™π‘œπ‘œπ‘‘ = 0.6 𝐴 𝐴 𝑛 = 0.8 Heat Exchangers: Area of heat exchangers determined with the following two equations: 𝐴 = 𝑄 π‘ˆβˆ†π‘‡π‘™π‘œπ‘” βˆ†π‘‡π‘™π‘œπ‘” = (𝑇𝑖𝑛 β„Žπ‘œπ‘‘ βˆ’ π‘‡π‘œπ‘’π‘‘ π‘π‘œπ‘™π‘‘ ) βˆ’ (π‘‡π‘œπ‘’π‘‘ β„Žπ‘œπ‘‘ βˆ’ π‘‡π‘œπ‘’π‘‘ π‘π‘œπ‘™π‘‘ ) ln ( 𝑇𝑖𝑛 β„Žπ‘œπ‘‘ βˆ’ π‘‡π‘œπ‘’π‘‘ π‘π‘œπ‘™π‘‘ π‘‡π‘œπ‘’π‘‘ β„Žπ‘œπ‘‘ βˆ’ π‘‡π‘œπ‘’π‘‘ π‘π‘œπ‘™π‘‘) Table 4: Values listed were used to calculate surface area and costs for heat exchangers. π»π‘’π‘Žπ‘‘ 𝐸π‘₯π‘β„Žπ‘Žπ‘›π‘”π‘’π‘Ÿ π‘ˆ [ π‘˜π‘Š π‘š2 𝐾 ] 𝑄[π‘˜π‘Š] βˆ†π‘‡π‘™π‘œπ‘”[℃] π‘ˆπ΄ [ π‘˜π½ ℃ ] 𝐴 [π‘š2] πΆπ‘œπ‘ π‘‘ [$] 1 E-100 0.82 2.0 Γ— 103 81 - 31 1.8E+04 2 E-102 0.485 2.8 Γ— 104 50 - 1163 1.8E+05 3 E-1200 0.82 1.6 Γ— 104 60 - 316 8.0E+04 4 E-2000 0.53 2.7 Γ— 103 60 - 85 3.4E+04 5 E-1400 0.11 5.2 Γ— 102 159 - 30 1.7E+04 6 E-1300 0.82 9.9 Γ— 103 86 - 140 4.7E+04 7 Reactor 0.53 2.3 Γ— 104 64 - 681 1.3E+05 8 E-101 0.095 - - 28 292 9 E-103 0.1 - - 28 278 10 E-1301 0.39 - - 14 36 11 E-1302 0.8 2.0 Γ— 103 32 - 58 1 Condenser 1 0.105 2.0 Γ— 103 22 - 2800 1.6E+06 1 Reboiler 1 0.82 2.0 Γ— 103 94 - 672 1.3E+05 2 Condenser 2 0.3 2.0 Γ— 103 99 - 2170 1.1E +06 2 Reboiler 2 0.82 2.0 Γ— 103 5 - 15670 1.0E+06 πΉπ‘š = 1 π‘“π‘œπ‘Ÿ πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› 𝑆𝑑𝑒𝑒𝑙 𝐹𝑝 = 0 π‘“π‘œπ‘Ÿ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’π‘  𝑒𝑝 π‘‘π‘œ 150 π‘π‘ π‘–π‘Ž 𝐹𝑑 = 1 π‘“π‘œπ‘Ÿ 𝑓𝑖π‘₯𝑒𝑑 βˆ’ 𝑑𝑒𝑏𝑒 π‘ β„Žπ‘’π‘’π‘‘
  30. 30. 30 Reactor=Pressure Vessel + Heat Exchanger (A-101-X): $ 0.136 MM πΌπ‘›π‘ π‘‘π‘Žπ‘™π‘™π‘Žπ‘‘π‘’π‘‘ πΆπ‘œπ‘ π‘‘ = 𝐼𝐢 Pressure Vessel: 𝐼𝐢 π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ 𝑣𝑒𝑠𝑠𝑒𝑙 = ( 1600 280 ) (101.9 Γ— 𝐷1.066)(𝐻0.82)(2.18 + 𝐹𝑐) = $4000 𝐹𝑐 = πΉπ‘š 𝐹𝑝 πΉπ‘š = 1 𝐹𝑝 = 2.5 π‘“π‘œπ‘Ÿ π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π‘œπ‘£π‘’π‘Ÿ π‘‘π‘œ 1000 π‘π‘ π‘–π‘Ž 𝑀&𝑆2015 = 1600 Table 5: Values listed were used to calculate surface area and costs for decanter and flash drum. Pressure Vessel Residence Time [h] Flow Rate [m3 /h] Height [m] Diameter [m] Cost [$] Flash 0.25 16 2 1.6 5400 Total Investment (TI) =$ 39 MM 𝑇𝐼 = 2.5 (𝐼𝑆𝐡𝐿) + π‘ŠπΆ Working Capital (WC) = $ 16 MM Two Month’s Cost of Raw Oxygen Flow Rate: $22 𝑀𝑀 π‘¦π‘’π‘Žπ‘Ÿ Γ— 1 π‘¦π‘’π‘Žπ‘Ÿ ~6 π‘šπ‘œπ‘›π‘‘β„Žπ‘  = $3.7 𝑀𝑀 Two Month’s Cost of Raw Carbon Monoxide Flow Rate: $22 𝑀𝑀 π‘¦π‘’π‘Žπ‘Ÿ Γ— 1 π‘¦π‘’π‘Žπ‘Ÿ ~6 π‘šπ‘œπ‘›π‘‘β„Žπ‘  = $8.8 𝑀𝑀 Two Month’s Cost of Raw Methanol Flow Rate:
  31. 31. 31 $22 𝑀𝑀 π‘¦π‘’π‘Žπ‘Ÿ Γ— 1 π‘¦π‘’π‘Žπ‘Ÿ ~6 π‘šπ‘œπ‘›π‘‘β„Žπ‘  = $3.7 𝑀𝑀 Appendix D-2. Economic Spreadsheet
  32. 32. 32 Appendix D-3. IRR Spreadsheet
  33. 33. 33 Appendix D-4. Breakeven Analysis
  34. 34. 34 Appendix E. Chemical Properties Name Chemical Formula Molecular Weight Physical Properties Boiling Point (Β°C) Freezing Point (Β°C) Flash Point (Β°C) Flammabiliy Limits (in Air) / Explosion Limits AutoIgnition Temperature ( Β°C) Specific Gravity Price Corrosiveness (Β΅m per year) & Materials of Manufacture Dimethyl Carbonate (DMC) OC(OCH3)2 90.1 Clear Liquid, Mildly Sweet Odor 89.9 4 16.7 Lower: 3.1% (V) Lower Flammability Limit Temp. = 8.9 Β°C Upper: 20.5%(V) Upper Flammability Limit Temp. = 46.9 Β°C 458 1.066 $0.90 /kg Stainless Steel: < 50 Β΅m/y Hasalloy: < 50 Β΅m/y Carbon Dioxide CO2 44.0 Colorless, Odorless gas - Sublimes -78.5 (at 1 atm) -56.57 - - - 1.52 (Vap. at 21 Β°C) - Stainless Steel: < 50 Β΅m/y Hasalloy: < 50 Β΅m/y Carbon Monoxide CO2 28.0 Colorless, Odorless gas -191.45 -205 - Lower: 12.5% (V) Upper:74.0%(V) 605 1.25 (Liq.) $0.18 /kg Carbon Steel: < 50 Β΅m/y Stainless Steel: Β΅m/y Oxygen O2 32.0 Colorless, Odorless gas -183.0 (at 1 atm) -218.8 (at 1 atm) - - - 1.105 $0.38 /kg Stainless Steel: >1.27 mm/yrHasalloy: <0.05 mm/yr Copper (I) Chloride CuCl 99.0 White powderSlightly green from oxidized impurities 1490 429.85 - Lower: 1.1% (V)Upper: 7.1%(V) - 4.14 - Stainless Steel: Unsuitable Hasalloy: < 500 Β΅m/yr Methanol CH3OH 32.1 Clear, colorless liquid. Alcohol odor 64.6 -98 11 Lower: 6.0 % (V) Upper: 36.0 %(V) 385 0.79 $0.49/kg Stainless Steel: >0.18 Β΅m/yrHasalloy: < 50 Β΅m/yExtremely corrosive to aluminum and iron Corrosion exacerbated by the presence of Oxygen
  35. 35. 35 Name Toxicology Special Precautions NFPA Rating Dimethyl Carbonate (DMC) Can cause eye and skin irritation upon contact Inhalation of vapors can cause anesthetic effect leading to death May be irritating to digestive tract if ingested Not a known carcinogen Highly Flammable Keep container in a well-ventilated place and away from sources of ignition Avoid extreme temperatures Incompatible with strong oxidizers and acids Flammability: 3 Health: Reactivity: 1 Other: Carbon Dioxide Can cause eye and skin irritation upon contact Inhalation of vapors can cause anesthetic effect leading to death May be irritating to digestive tract if ingested Not a known carcinogen Ventillation should ensure oxygen concentration remains above 19.5% and C02 concentration does not exceed 5000 ppm Flammability: 0 Health: 1 Reactivity: 0 Other: - Carbon Monoxide Toxic Asphyxiant Moderate concentrations may cause headache, drowsiness, dizziness, and unconsciousness Prolonged exposure leads to death Extremely Flammable Gas May form explosive mixtures with air and oxidizing agents Ventilate area or move containers to well-ventilated areas If venting or leaking gas catches fire, do not extinguish flames. Flammable vapors may spread from leak, creating an explosive reignition hazard Flammability: 4 Health: 3 Reactivity: 0 Other: - Oxygen Breathing >80% at atmospheric pressure may cause , cough, sore throat, chest pain and breathing difficulty.Retinal damage may occur after exposure for extended periods May cause or intensify fire (oxidizer)Extremely flammable in the presence of reducingmaterials, combustible materials and organic materials.Protect from sunlight when ambient temp. exceeds 52Β°CStore in a well-ventilated area Flammability: 0 Health: 0 (gas) 3 (liq.) Reactivity: 0 Other:Oxidizer Copper (I) Chloride Very hazardous in case of ingestion Eye contact can result in corneal damage or blindness. Skin contact can produce inflammation and blistering Over-exposure can produce lung damage, choking, unconsciousness or death Store in a separate safety storage cabinet or room Prevent ingress of water, ingestion, dust inhalation and contact with eyes Wear suitable protective clothing in case of insufficient ventilation Flammability: 0 Health: 3 Reactivity: 0 Other: - Methanol Highly Toxic May cause blindness if ingested Toxic via inhalation - May cause headache, convulsions, and eventually death. May be absorbed through the skin in harmful amounts. Irritating to body tissues.Prolonged and/or repeated contact may cause defatting of the skin and dermatitis.Chronic exposure may cause reproductive disorders and teratogenic effects (i.e. may cause birth defects in the child or halt pregnancy Extremely Flammable Gas When heated to decomposition, emits acrid smoke and irritating fumesMay form explosive mixtures with air and oxidizing agentsVentilate area or move containers to well- ventilated areasIf venting or leaking gas catches fire, do not extinguish flames.Flammable vapors may spread from leak, creating an explosive reignition hazard Flammability: 3 Health: 1 Reactivity: 0 Other: -
  36. 36. 36 Appendix F. Level 2 Molar Flow Rates Figure 1: Molar flowrates entering and leaving the DMC plant. Given Reactions: 2𝐢𝐻3 𝑂𝐻 + 1 2 𝑂2 + 𝐢𝑂 β†’ 𝐢𝐻3 βˆ’ 𝑂 βˆ’ (𝐢𝑂) βˆ’ 𝑂 βˆ’ 𝐢𝐻3 + 𝐻2 𝑂 (1) 1 2 𝑂2 + 𝐢𝑂 β†’ 𝐢𝑂2 (2) Initial mole balance matrix: 𝐹𝐷𝑀𝐢 𝑃𝐷𝑀𝐢 1 0 0 𝐹𝐢𝑂2 𝑃𝐢𝑂2 0 1 0 𝐹𝑂2 - 𝑃𝑂2 + βˆ’1/2 βˆ’1/2 πœ‰1 = 0 𝐹𝐢𝑂 𝑃𝐢𝑂 βˆ’1 βˆ’1 πœ‰2 0 𝐹 𝑀𝑒𝑂𝐻 𝑃 𝑀𝑒𝑂𝐻 βˆ’2 0 0 𝐹 𝐻2 𝑂 𝑃 𝐻2 𝑂 1 0 0 πΌπ‘›π‘–π‘‘π‘–π‘Žπ‘™ π‘€π‘œπ‘™π‘’ π΅π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘ : π·π‘–π‘šπ‘’π‘‘β„Žπ‘¦π‘™ πΆπ‘Žπ‘Ÿπ‘π‘œπ‘›π‘Žπ‘‘π‘’: 𝐹𝐷𝑀𝐢 βˆ’ 𝑃𝐷𝑀𝐢 + πœ‰1 = 0 πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π·π‘–π‘œπ‘₯𝑖𝑑𝑒: 𝐹𝐢𝑂2 βˆ’ 𝑃𝐢𝑂2 + πœ‰2 = 0 𝑂π‘₯𝑦𝑔𝑒𝑛: 𝐹𝑂2 βˆ’ 𝑃𝑂2 βˆ’ 1/2 πœ‰1 βˆ’ 1/2 πœ‰2 = 0 πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π‘€π‘œπ‘›π‘œπ‘₯𝑖𝑑𝑒: 𝐹𝐢𝑂 βˆ’ 𝑃𝐢𝑂 βˆ’ πœ‰1 βˆ’ πœ‰2 = 0 π‘€π‘’π‘‘β„Žπ‘Žπ‘›π‘œπ‘™: 𝐹 𝑀𝑒𝑂𝐻 βˆ’ 𝑃 𝑀𝑒𝑂𝐻 + 2πœ‰1 = 0 π‘Šπ‘Žπ‘‘π‘’π‘Ÿ: 𝐹 𝐻2 𝑂 βˆ’ 𝑃 𝐻2 𝑂 + πœ‰1 = 0
  37. 37. 37 Assuming none of the reactants leave the plant, flows set to zero where appropriate: 0 𝑃𝐷𝑀𝐢 1 0 0 0 𝑃𝐢𝑂2 0 1 0 𝐹𝑂2 - 0 + βˆ’1/2 βˆ’1/2 πœ‰1 = 0 𝐹𝐢𝑂 0 βˆ’1 βˆ’1 πœ‰2 0 𝐹 𝑀𝑒𝑂𝐻 0 βˆ’2 0 0 0 𝑃 𝐻2 𝑂 1 0 0 π‘†π‘’π‘π‘ π‘’π‘žπ‘’π‘’π‘›π‘‘ π‘€π‘œπ‘™π‘’ π΅π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘ : π·π‘–π‘šπ‘’π‘‘β„Žπ‘¦π‘™ πΆπ‘Žπ‘Ÿπ‘π‘œπ‘›π‘Žπ‘‘π‘’: βˆ’ 𝑃𝐷𝑀𝐢 + πœ‰1 = 0 πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π·π‘–π‘œπ‘₯𝑖𝑑𝑒: βˆ’π‘ƒπΆπ‘‚2 + πœ‰2 = 0 𝑂π‘₯𝑦𝑔𝑒𝑛: 𝐹𝑂2 βˆ’ 1/2 πœ‰1 βˆ’ 1/2 πœ‰2 = 0 πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π‘€π‘œπ‘›π‘œπ‘₯𝑖𝑑𝑒: 𝐹𝐢𝑂 βˆ’ πœ‰1 βˆ’ πœ‰2 = 0 π‘€π‘’π‘‘β„Žπ‘Žπ‘›π‘œπ‘™: 𝐹 𝑀𝑒𝑂𝐻 + 2πœ‰1 = 0 π‘Šπ‘Žπ‘‘π‘’π‘Ÿ: βˆ’ 𝑃 𝐻2 𝑂 + πœ‰1 = 0 Reference species DMC and CO2 used to solve for extents: 𝜈 π‘Ÿπ‘’π‘“ = [ 1 0 0 1 ] 𝜈 π‘Ÿπ‘’π‘“ βˆ’1 = [ 1 0 0 1 ] [ πœ‰1 πœ‰2 ] = [ 1 0 0 1 ] [ 𝑃𝐷𝑀𝐢 𝑃𝐢𝑂2 ] [ πœ‰1 πœ‰2 ] = [ 𝑃𝐷𝑀𝐢 𝑃𝐢𝑂2 ] 0 𝑃𝐷𝑀𝐢 1 0 0 0 𝑃𝐢𝑂2 0 1 0 𝐹𝑂2 - 0 + βˆ’1/2 βˆ’1/2 𝑃𝐷𝑀𝐢 = 0 𝐹𝐢𝑂 0 βˆ’1 βˆ’1 𝑃𝐢𝑂2 0 𝐹 𝑀𝑒𝑂𝐻 0 βˆ’2 0 0 0 𝑃 𝐻2 𝑂 1 0 0 π‘†π‘’π‘π‘ π‘’π‘žπ‘’π‘’π‘›π‘‘ π‘€π‘œπ‘™π‘’ π΅π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘ : 𝑂π‘₯𝑦𝑔𝑒𝑛: 𝐹𝑂2 βˆ’ 1/2 𝑃𝐷𝑀𝐢 βˆ’ 1/2𝑃𝐢𝑂2 = 0
  38. 38. 38 πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π‘€π‘œπ‘›π‘œπ‘₯𝑖𝑑𝑒: 𝐹𝐢𝑂 βˆ’ 𝑃𝐷𝑀𝐢 βˆ’ 𝑃𝐢𝑂2 = 0 π‘€π‘’π‘‘β„Žπ‘Žπ‘›π‘œπ‘™: 𝐹 𝑀𝑒𝑂𝐻 + 2𝑃𝐷𝑀𝐢 = 0 π‘Šπ‘Žπ‘‘π‘’π‘Ÿ: βˆ’ 𝑃 𝐻2 𝑂 + 𝑃𝐷𝑀𝐢 = 0 π‘†π‘π‘’π‘π‘–π‘“π‘–π‘π‘Žπ‘‘π‘–π‘œπ‘›π‘ : 𝑃𝐷𝑀𝐢 = 150,000 π‘˜π‘” π‘¦π‘Ÿ 𝑆𝑒𝑙𝑒𝑐𝑑𝑖𝑣𝑖𝑑𝑦 = 𝑆 = 𝑃𝐷𝑀𝐢 2 𝐹𝑂2 β†’ 𝐹𝑂2 = 𝑃𝐷𝑀𝐢 2 𝑆 π‘†π‘’π‘π‘ π‘’π‘žπ‘’π‘’π‘›π‘‘ π‘€π‘œπ‘™π‘’ π΅π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘ : πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π·π‘–π‘œπ‘₯𝑖𝑑𝑒: 𝑃𝐢𝑂2 = 𝑃𝐷𝑀𝐢 (1 βˆ’ 𝑆) 𝑆 𝑂π‘₯𝑦𝑔𝑒𝑛: 𝐹𝑂2 = 𝑃𝐷𝑀𝐢 2 𝑆 πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π‘€π‘œπ‘›π‘œπ‘₯𝑖𝑑𝑒: 𝐹𝐢𝑂 = 𝑃𝐷𝑀𝐢 𝑆 π‘€π‘’π‘‘β„Žπ‘Žπ‘›π‘œπ‘™: 𝐹 𝑀𝑒𝑂𝐻 = 2𝑃𝐷𝑀𝐢 π‘Šπ‘Žπ‘‘π‘’π‘Ÿ: 𝑃 𝐻2 𝑂 = 𝑃𝐷𝑀𝐢
  39. 39. 39 Appendix G. Level 3 Mole Balances Figure 2: Level 3 recycle material balance. π‘†π‘π‘’π‘π‘–π‘“π‘–π‘π‘Žπ‘‘π‘–π‘œπ‘›π‘ : 𝑃𝐷𝑀𝐢 = 150,000 π‘˜π‘” π‘¦π‘Ÿ 𝑆𝑒𝑙𝑒𝑐𝑑𝑖𝑣𝑖𝑑𝑦 = 𝑆 = 𝑃𝐷𝑀𝐢 2 𝐹𝑂2 β†’ 𝐹𝑂2 = 𝑃𝐷𝑀𝐢 2 𝑆 𝐸π‘₯𝑖𝑑 πΉπ‘™π‘œπ‘€π‘ : 𝑃𝐷𝑀𝐢 = 150,000 π‘˜π‘” π‘¦π‘Ÿ π‘Šπ‘Žπ‘‘π‘’π‘Ÿ: 𝑃 𝐻2 𝑂 = 𝑃𝐷𝑀𝐢 πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π·π‘–π‘œπ‘₯𝑖𝑑𝑒: 𝑃𝐢𝑂2 = 𝑃𝐷𝑀𝐢 (1 βˆ’ 𝑆) 𝑆 πΉπ‘Ÿπ‘’π‘ β„Ž 𝐹𝑒𝑒𝑑: 𝑂π‘₯𝑦𝑔𝑒𝑛: 𝐹𝐹,𝑂2 = 𝑃𝐷𝑀𝐢 2 𝑆 π‘€π‘’π‘‘β„Žπ‘Žπ‘›π‘œπ‘™: 𝐹𝐹,𝑀𝑒𝑂𝐻 = 2𝑃𝐷𝑀𝐢 πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π‘€π‘œπ‘›π‘œπ‘₯𝑖𝑑𝑒: 𝐹𝐹,𝐢𝑂 = 𝑃𝐷𝑀𝐢 𝑆 𝐹𝑒𝑒𝑑 π‘–π‘›π‘‘π‘œ π‘…π‘’π‘Žπ‘π‘‘π‘œπ‘Ÿ: 𝑂π‘₯𝑦𝑔𝑒𝑛: 𝐹𝑂2 = 𝑃𝐷𝑀𝐢 2 𝑆𝑋 π‘€π‘’π‘‘β„Žπ‘Žπ‘›π‘œπ‘™: 𝐹 𝑀𝑒𝑂𝐻 = 𝑀𝑅1 𝐹𝑂2 = 𝑀𝑅1 𝑃𝐷𝑀𝐢 2 𝑆𝑋 πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π‘€π‘œπ‘›π‘œπ‘₯𝑖𝑑𝑒: 𝐹𝐢𝑂 = 𝑀𝑅2 𝐹𝑂2 = 𝑀𝑅2 𝑃𝐷𝑀𝐢 2 𝑆𝑋 𝑅𝑒𝑐𝑦𝑐𝑙𝑒 πΉπ‘™π‘œπ‘€π‘ : 𝑅𝑒𝑐𝑦𝑙𝑒 𝐹𝑒𝑒𝑑 = 𝐹𝑒𝑒𝑑 π‘–π‘›π‘‘π‘œ π‘…π‘’π‘Žπ‘π‘‘π‘œπ‘Ÿ βˆ’ πΉπ‘Ÿπ‘’π‘ β„Ž 𝐹𝑒𝑒𝑑 𝑂π‘₯𝑦𝑔𝑒𝑛: 𝑅 𝑂2 = 𝑃𝐷𝑀𝐢 2 𝑆 ( 1 βˆ’ 𝑋 𝑋 ) π‘€π‘’π‘‘β„Žπ‘Žπ‘›π‘œπ‘™: 𝑅 𝑀𝑒𝑂𝐻 = 𝑀𝑅1 𝑃𝐷𝑀𝐢 2 𝑆 βˆ’ 2𝑃𝐷𝑀𝐢 = 𝑃𝐷𝑀𝐢 ( 𝑀𝑅1 2 𝑆𝑋 βˆ’ 2) πΆπ‘Žπ‘Ÿπ‘π‘œπ‘› π‘€π‘œπ‘›π‘œπ‘₯𝑖𝑑𝑒: 𝑅 𝐢𝑂 = 𝑃𝐷𝑀𝐢 𝑆 ( 𝑀𝑅2 2𝑋 βˆ’ 1)
  40. 40. 40 Appendix H. MATLAB Script Appendix H-1. Reactor Conceptual design and optimization clc, clear, close all %single condition run Mme=32.04;%molar mass of methanol in g/mol Mco=28.01;%molar mass of CO in g/mol Mdmc=90.08;%molar mass of DMC in g/mol Mh2o=18.01;%moalr mass of water in g/mol Mo2=15.9994*2;%molar mass of O2 in g/mol Mco2=44.01;%molar mass of CO2 in g/mol Pdmc=150*10.^6*1000/Mdmc/8400/3600;%target flow rate of DMC in mol/s Kho2=3179;%O2 Henry's const in bar Khco=3107;%CO Henry's const in bar Khco2=158;%CO2 Henry's const in bar Ame=5.31301;%Antoine for methanol Bme=1676.569; Cme=-21.728;%Antoine range (80-210C) Ah2o=4.6543; Bh2o=1435.264; Ch2o=-64.848; Admc=4.77616; Bdmc=1721.904; Cdmc=-37.959; Ptot0=30;%paressure in atm at inlet R=1.9872041;%IG const in cal K-1 mol-1 RR=.082057;%IG const in L atm K-1 mol-1 tau=logspace(-3,2.5,60); MR1=15;%MR between MeOH to O2 MR2=26;%MR between CO to O2 (Explosion Limit is less than 24) for i=1:length(tau) n0=58.3333;%inlet oxygen molar flow rate Treact=130+273.15;%temperature in K %rho=Ptot0/(1);%mol/L Ptot0bar=Ptot0*1.01325;%total inlet pressure in bar k1=1.4*10.^(11)*exp(-24000/(R*Treact)); k2=5.6*10.^(12)*exp(-22700/(R*Treact)); xo20=(Ptot0bar/(MR2+1))/(Kho2);%initial O2 mol frac in liquid xco0=(MR2*Ptot0bar)/(1+MR2)/(Khco);%initial CO mol frac in liquid xme0=1-xo20-xco0;%initial MeOH mol frac in liquid Ftot0liq=MR1*n0/xme0;%initial total molar flow rate in liq Fme0=Ftot0liq*xme0;%initial MeOH molar flow in liq Fo20=n0;%O2 initial flow rate in vap Fco0=MR2*n0;%CO initial flow rate in vap Fo20liq=Ftot0liq*xo20;%initial O2 molar flow in liq Fco0liq=Ftot0liq*xco0;%initial CO molar flow in liq Cme=22.2;%molar volume of MeOH in mol/L at 105C and 10-40 bar rholiq=Cme;
  41. 41. 41 Ch2o=52.5;%molar volume of water in mol/L Cdmc=11.8;%molar volume of DMC in mol/L q=Fme0/Cme; %q=((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4 )+Y(5))))) %assume MeOH takes over the liquid phase property %mol ratio times 22.2 mol/L gives me the concentrations, which is usable %for the rate laws time=tau(i);% Picking a tau [s] a=[Fme0 Fo20 Fco0 0 0 0 Cme]; %initial condition for 9 equations to solve error=1; count=0; while error>10^(-4); CSTR_func=@(Y)([-Y(1)+Fme0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*2.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1 )/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); -Y(2)+Fco0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/( Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5) /(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; -Y(3)+Fo20- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y( 1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*( Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; - Y(4)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(5)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(6)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o* (Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5]); options=optimset('fsolve'); options.MaxFunEvals = 50000; options.MaxIter = 2000; options.TolFun=1e-28; roots=real(fsolve(CSTR_func,a,options));%everything in result is in mol/s result(i,:)=real(roots); error=max(abs(a-result(i,:)));
  42. 42. 42 a=result(i,:);%redifining initial guess count=count+1; result=abs(result); end molfrac(i,:)=[result(i,1)/sum(result(i,:));result(i,2)/sum(result(i,:));result(i,3)/sum(result(i,:));result(i,4)/sum(result(i,: ));result(i,5)/sum(result(i,:));result(i,6)/sum(result(i,:))]; conv=(Fo20-result(i,3))/Fo20; sel=result(i,4)*.5/(Fo20-result(i,3)); flow_tot_inlet=Pdmc/(sel*conv)*.5*(1+MR1)/((result(i,1)/sum(result(i,1:6)))*Cme+(result(i,4)/sum(result(i,1:6)))* Cdmc+(result(i,5)/sum(result(i,1:6)))*Ch2o); volCSTR(i)=time*flow_tot_inlet;%CSTR liquid volume in L convCSTR(i)=conv; selCSTR(i)=sel; Fresho2(i)=Pdmc/(sel)*.5;%fresh feed O2 mol/s n0=Fresho2(i); Freshco=n0*MR2*3600/10^6*2; tot_out_mol(i)=sum(result(i,:));%total inlet mass flowrate Rco(i)=-(Freshco-result(i,2)); tot_in_mol(i)=(1+MR1+MR2)*Fresho2(i)+Rco(i); end %mass_out=[result(i,1)*Mme*3600/10^(6);result(i,2)*Mco*3600/10^(6);result(i,3)*Mo2*3600/10^(6);result(i,4)* Mdmc*3600/10^(6);result(i,5)*Mh2o*3600/10^(6);result(i,6)*Mco2*3600/10^(6)]%outlet mass flow rates in MT/h Freshme=n0*selCSTR(i)*convCSTR(i)*Mme*3600/10^6*4;%fresh feed MeOH MT/h tot_in_mass=(n0*Mo2+MR1*n0*Mme+n0*MR2*Mco)*3600/10^6;%total inlet mass flowrate figure(1) plot(tau,convCSTR) axis([0,time,0,1]); hold all xlabel('Tau (sec)') ylabel('X') figure(2) plot(convCSTR,selCSTR) hold all xlabel('X') ylabel('S') axis([0,1,0,1]) figure(3) plot(convCSTR,volCSTR) xlabel('X') ylabel('Volume (m^3)') %axis([0,1,0,2500]); volCSTR(i)%design volume in L result(i,4)*Mdmc/1000*3600*8400*10^(-6);%DMC flow rate in MMkg/yr figure(4) %plot(conv,Fresho2,conv,Reb,conv,Ftot_in,conv,Ftotal)
  43. 43. 43 primary_axis=zeros(length(Fresho2),2); primary_axis(:,1)=Rco; primary_axis(:,2)=tot_in_mol; primary_axis(:,3)=tot_out_mol; secondary_axis=zeros(i,2); secondary_axis(:,1)=Fresho2; xlabel('X') ylabel('Flow Rate (mol/s)') [ax,h1,h2]=plotyy(convCSTR,primary_axis,convCSTR,secondary_axis); set(ax(1),'YLim',[1000, 4000]) set(ax(1),'YTick',linspace(1000, 4000,5)) set(ax(2),'YLim',[35, 45]) set(ax(2),'YTick',linspace(35,45,5)) set(h2,'color','red'); set(h1(2),'LineStyle','--'); set(h1(3),'LineStyle','-.'); set(h1,'color','blue'); set(ax,{'ycolor'},{'blue';'red'}); ylabel('Flow Rate (mol/s)') set(get(ax(2),'Ylabel'),'string','Flow Rate (mol/s)') xlabel('Conversion') legend('Recycle CO','Total_i_n','Total_o_u_t','Fresh O_2') figure(5) %plot(conv,Fresho2,conv,Reb,conv,Ftot_in,conv,Ftotal) primary_axis1(:,1)=molfrac(:,1); primary_axis1(:,2)=molfrac(:,2); secondary_axis1(:,1)=molfrac(:,3); secondary_axis1(:,2)=molfrac(:,4); secondary_axis1(:,3)=molfrac(:,6); xlabel('X') ylabel('Mole Fraction') [ax,h1,h2]=plotyy(convCSTR,primary_axis1,convCSTR,secondary_axis1); set(ax(1),'YLim',[.3,.8]) set(ax(1),'YTick',linspace(.3,.8,5)) set(ax(2),'YLim',[0,.04]) set(ax(2),'YTick',linspace(0,.04,5)) set(h1(1),'LineStyle','--'); set(h1(2),'LineStyle','--'); set(ax,{'ycolor'},{'blue';'red'});
  44. 44. 44 ylabel('Mole Fraction') set(get(ax(2),'Ylabel'),'string','Flow Rate (mol/s)') xlabel('Conversion') legend('MeOH','CO','O_2','DMC/H_2O','CO_2') Hfme=-57.02*1000;%heat of formation for liquid MeOH ethylbenzene in cal/mol Hfco=-26.416*1000;%heat of formation for gas phase CO in cal/mol Hfo2=0;%heat of formation for gas phase O2 in cal/mol Hfdmc=-145.312*1000;%heat of formation for liquid DMC in cal/mol Hfh2o=-68.317*1000;%heat of formation for liquid H2O in cal/mol Hfco2=-94.052*1000;%heaet of formation for gas phase CO2 in cal/mol Hrxn1=Hfdmc+Hfh2o-(2*Hfme+Hfco+.5*Hfo2);%heat of rxn1 in cal/mol Hrxn2=Hfco2-(Hfco+.5*Hfo2);%heat of rxn2 in cal/mol %Adiabatic Temp Rise Tin=linspace(80,130,20); Tout=zeros(1,length(Tin)); Ptot0=40;%paressure in atm at inlet R=1.9872041;%IG const in cal K-1 mol-1 RR=.082057;%IG const in L atm K-1 mol-1 tau=logspace(-3,2,60); MR1=15;%MR between MeOH to O2 MR2=26;%MR between CO to O2 (Explosion Limit is less than 24) for j=1:length(Tin) for i=1:length(tau) Treact=Tin(j)+273.15;%temperature in K %rho=Ptot0/(1);%mol/L Ptot0bar=Ptot0*1.01325;%total inlet pressure in bar k1=1.4*10.^(11)*exp(-24000/(R*Treact)); k2=5.6*10.^(12)*exp(-22700/(R*Treact)); xo20=(Ptot0bar/(MR2+1))/(Kho2);%initial O2 mol frac in liquid xco0=(MR2*Ptot0bar)/(1+MR2)/(Khco);%initial CO mol frac in liquid xme0=1-xo20-xco0;%initial MeOH mol frac in liquid Ftot0liq=MR1*n0/xme0;%initial total molar flow rate in liq Fme0=Ftot0liq*xme0;%initial MeOH molar flow in liq Fo20=n0;%O2 initial flow rate in vap Fco0=MR2*n0;%CO initial flow rate in vap Fo20liq=Ftot0liq*xo20;%initial O2 molar flow in liq Fco0liq=Ftot0liq*xco0;%initial CO molar flow in liq Cme=22.2;%molar volume of MeOH in mol/L at 105C and 10-40 bar rholiq=Cme; Ch2o=52.5;%molar volume of water in mol/L Cdmc=11.8;%molar volume of DMC in mol/L q=Fme0/Cme; time=tau(i);% Picking a tau [s] a=[Fme0 Fo20 Fco0 0 0 0 Cme]; %initial condition for 9 equations to solve error=1; count=0;
  45. 45. 45 while error>10^(-4); CSTR_func=@(Y)([-Y(1)+Fme0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*2.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1 )/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); -Y(2)+Fco0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/( Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5) /(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; -Y(3)+Fo20- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y( 1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*( Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; - Y(4)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(5)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(6)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o* (Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5]); options=optimset('fsolve'); options.MaxFunEvals = 50000; options.MaxIter = 2000; options.TolFun=1e-28; roots=real(fsolve(CSTR_func,a,options));%everything in result is in mol/s result(i,:)=real(roots); error=max(abs(a-result(i,:))); a=result(i,:);%redifining initial guess count=count+1; result=abs(result); end conv=(Fo20-result(i,3))/Fo20; sel=result(i,4)*.5/(Fo20-result(i,3)); flow_tot_inlet=Pdmc/(sel*conv)*.5*(1+MR1+MR2)/((result(i,1)/sum(result(i,1:6)))*Cme+(result(i,4)/sum(result(i,1 :6)))*Cdmc+(result(i,5)/sum(result(i,1:6)))*Ch2o); volCSTR(i)=time*flow_tot_inlet/1000;%CSTR volume in m^3 convCSTR(i)=conv; selCSTR(i)=sel; Heat1=Hrxn1*roots(4);%heat generated from rxn1 in cal Heat2=Hrxn2*roots(6);%heat generated from rxn2 in cal
  46. 46. 46 conv=(Fo20-result(i,3))/Fo20; sel=result(i,4)*.5/(Fo20-result(i,3)); end Cpme80=22.685; %MeOH Cp at 80C cal/molK Cpme130=27.046;%MeOH Cp at 130C cal/mol/K cpme=@(tmp)((tmp-(273.15+80))*(Cpme130-Cpme80)/(130-80)+Cpme80); Cpme=cpme(Treact);%heat capacity of methane in cal/mol K Qr=Heat1+Heat2; Cptot_out=Fme0*Cpme; solveTout=@(To)((Treact-To)*Cptot_out-Qr); To=fzero(solveTout,Treact)-273.15; Tout(j)=To; end figure(6) plot(Tin,Tout) xlabel('T_i_n(C)') ylabel('T_o_u_t(C)') Temps=linspace(80,130,5); %reactor optimization Ptot0=30;%paressure in atm at inlet R=1.9872041;%IG const in cal K-1 mol-1 RR=.082057;%IG const in L atm K-1 mol-1 tau=logspace(-3,3,60); MR1=15;%MR between MeOH to O2 MR2=26;%MR between CO to O2 (Explosion Limit is less than 24) n0=.5*Pdmc;%inlet oxygen molar flow rate %Vary Temps for j=1:length(Temps) for i=1:length(tau) Treact=Temps(j)+273.15;%temperature in K %rho=Ptot0/(1);%mol/L Ptot0bar=Ptot0*1.01325;%total inlet pressure in bar k1=1.4*10.^(11)*exp(-24000/(R*Treact)); k2=5.6*10.^(12)*exp(-22700/(R*Treact)); xo20=(Ptot0bar/(MR2+1))/(Kho2);%initial O2 mol frac in liquid xco0=(MR2*Ptot0bar)/(1+MR2)/(Khco);%initial CO mol frac in liquid xme0=1-xo20-xco0;%initial MeOH mol frac in liquid Ftot0liq=MR1*n0/xme0;%initial total molar flow rate in liq Fme0=Ftot0liq*xme0;%initial MeOH molar flow in liq Fo20=n0;%O2 initial flow rate in vap Fco0=MR2*n0;%CO initial flow rate in vap
  47. 47. 47 Fo20liq=Ftot0liq*xo20;%initial O2 molar flow in liq Fco0liq=Ftot0liq*xco0;%initial CO molar flow in liq Cme=22.2;%molar volume of MeOH in mol/L at 105C and 10-40 bar rholiq=Cme; Ch2o=52.5;%molar volume of water in mol/L Cdmc=11.8;%molar volume of DMC in mol/L q=Fme0/Cme; time=tau(i);% Picking a tau [s] a=[Fme0 Fo20 Fco0 0 0 0 Cme]; %initial condition for 9 equations to solve error=1; count=0; while error>10^(-4); %{ CSTR_func=@(Y)([-Y(1)+Fme0- q.*2.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*rholiq.^2.5); -Y(2)+Fco0- q.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*rholiq.^2.5)- q.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*rholiq.^.5; -Y(3)+Fo20- q.*.5.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*rholiq.^2.5)- q.*.5.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*rholiq.^.5; - Y(4)+q.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*rholiq.^2.5); - Y(5)+q.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*rholiq.^2.5); -Y(6)+q.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*rholiq.^.5]); %} %below takes into account average variable liquid phase mole fractions CSTR_func=@(Y)([-Y(1)+Fme0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*2.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1 )/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); -Y(2)+Fco0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/( Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5) /(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; -Y(3)+Fo20- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y( 1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*( Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; - Y(4)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5);
  48. 48. 48 - Y(5)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(6)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o* (Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5]); options=optimset('fsolve'); options.MaxFunEvals = 50000; options.MaxIter = 2000; options.TolFun=1e-28; %xco_instant=Ptot0bar*Y(2)/(Y(2)+Y(3)+Y(6))/Khco %xo2_instant=Ptot0bar*Y(3)/(Y(2)+Y(3)+Y(6))/Kho2 %xco2_instant=Ptot0bar*Y(6)/(Y(2)+Y(3)+Y(6))/Khco2 %Ftot_instant=(Y(1)+Y(4)+Y(5))/(1-Ptot0bar*(Y(2)/(Y(2)+Y(3)+Y(6))/Khco- Y(3)/(Y(2)+Y(3)+Y(6))/Kho2-Y(6)/(Y(2)+Y(3)+Y(6))/Khco2)) roots=real(fsolve(CSTR_func,a,options));%everything in result is in mol/s result(i,:)=real(roots); error=max(abs(a-result(i,:))); a=result(i,:);%redifining initial guess count=count+1; result=abs(result); end conv=(Fo20-result(i,3))/Fo20; sel=result(i,4)*.5/(Fo20-result(i,3)); flow_tot_inlet=Pdmc/(sel*conv)*.5*(1+MR1)/((result(i,1)/sum(result(i,1:6)))*Cme+(result(i,4)/sum(result(i,1:6)))* Cdmc+(result(i,5)/sum(result(i,1:6)))*Ch2o); volCSTR(i)=time*flow_tot_inlet/1000;%CSTR volume in m^3 convCSTR(i)=conv; selCSTR(i)=sel; end figure(7) plot(tau,convCSTR) axis([0,time,0,1]); hold all xlabel('Tau (sec)') ylabel('X') legend('T=80.0C','T=92.5C','T=105.0C','T=117.5C','T=130.0C') figure(8) plot(convCSTR,selCSTR) hold all xlabel('X') ylabel('S') legend('T=80.0C','T=92.5C','T=105.0C','T=117.5C','T=130.0C') axis([0,1,0,1]) figure(9) hold all plot(convCSTR,volCSTR) xlabel('X')
  49. 49. 49 ylabel('Volume (m^3)') %axis([0,1,0,2500]); legend('T=80.0C','T=92.5C','T=105.0C','T=117.5C','T=130.0C') box on end %Vary Pressure tau=logspace(-3,2,60); Pressures=linspace(10,40,5); for j=1:length(Pressures) for i=1:length(tau) Treact=130+273.15;%temperature in K %rho=Ptot0/(1);%mol/L Ptot0bar=Pressures(j)*1.01325;%total inlet pressure in bar k1=1.4*10.^(11)*exp(-24000/(R*Treact)); k2=5.6*10.^(12)*exp(-22700/(R*Treact)); xo20=(Ptot0bar/(MR2+1))/(Kho2);%initial O2 mol frac in liquid xco0=(MR2*Ptot0bar)/(1+MR2)/(Khco);%initial CO mol frac in liquid xme0=1-xo20-xco0;%initial MeOH mol frac in liquid Ftot0liq=MR1*n0/xme0;%initial total molar flow rate in liq Fme0=Ftot0liq*xme0;%initial MeOH molar flow in liq Fo20=n0;%O2 initial flow rate in vap Fco0=MR2*n0;%CO initial flow rate in vap Fo20liq=Ftot0liq*xo20;%initial O2 molar flow in liq Fco0liq=Ftot0liq*xco0;%initial CO molar flow in liq Cme=22.2;%molar volume of MeOH in mol/L at 105C and 10-40 bar rholiq=Cme; Ch2o=52.5;%molar volume of water in mol/L Cdmc=11.8;%molar volume of DMC in mol/L q=Fme0/Cme; time=tau(i);% Picking a tau [s] a=[Fme0 Fo20 Fco0 0 0 0 Cme]; %initial condition for 9 equations to solve error=1; count=0; while error>10^(-4); CSTR_func=@(Y)([-Y(1)+Fme0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*2.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1 )/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); -Y(2)+Fco0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/( Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5) /(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; -Y(3)+Fo20- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y( 1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y
  50. 50. 50 (5))))).*.5.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*( Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; - Y(4)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(5)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(6)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o* (Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5]); options=optimset('fsolve'); options.MaxFunEvals = 50000; options.MaxIter = 2000; options.TolFun=1e-28; roots=real(fsolve(CSTR_func,a,options));%everything in result is in mol/s result(i,:)=real(roots); error=max(abs(a-result(i,:))); a=result(i,:);%redifining initial guess count=count+1; result=abs(result); end conv=(Fo20-result(i,3))/Fo20; sel=result(i,4)*.5/(Fo20-result(i,3)); flow_tot_inlet=Pdmc/(sel*conv)*.5*(1+MR1)/((result(i,1)/sum(result(i,1:6)))*Cme+(result(i,4)/sum(result(i,1:6)))* Cdmc+(result(i,5)/sum(result(i,1:6)))*Ch2o); volCSTR(i)=time*flow_tot_inlet/1000;%CSTR volume in m^3 convCSTR(i)=conv; selCSTR(i)=sel; end figure(10) plot(tau,convCSTR) axis([0,time,0,1]); hold all xlabel('Tau (sec)') ylabel('X') legend('P=10.0atm','P=17.5atm','P=25.0atm','P=32.5atm','P=40.0atm') figure(11) plot(convCSTR,selCSTR) hold all xlabel('X') ylabel('S') legend('P=10.0atm','P=17.5atm','P=25.0atm','P=32.5atm','P=40.0atm') axis([0,1,0,1]) figure(12) hold all plot(convCSTR,volCSTR) xlabel('X')
  51. 51. 51 ylabel('Volume (m^3)') %axis([0,1,0,250]); legend('P=10.0atm','P=17.5atm','P=25.0atm','P=32.5atm','P=40.0atm') box on end MR1s=[4,6,10,20,60]; %Vary MR1 for j=1:length(Temps) for i=1:length(tau) if j==5; MR1=5; else MR1=MR1s(j); end Treact=130+273.15;%temperature in K %rho=Ptot0/(1);%mol/L Ptot0bar=30*1.01325;%total inlet pressure in bar k1=1.4*10.^(11)*exp(-24000/(R*Treact)); k2=5.6*10.^(12)*exp(-22700/(R*Treact)); xo20=(Ptot0bar/(MR2+1))/(Kho2);%initial O2 mol frac in liquid xco0=(MR2*Ptot0bar)/(1+MR2)/(Khco);%initial CO mol frac in liquid xme0=1-xo20-xco0;%initial MeOH mol frac in liquid Ftot0liq=MR1*n0/xme0;%initial total molar flow rate in liq Fme0=Ftot0liq*xme0;%initial MeOH molar flow in liq Fo20=n0;%O2 initial flow rate in vap Fco0=MR2*n0;%CO initial flow rate in vap Fo20liq=Ftot0liq*xo20;%initial O2 molar flow in liq Fco0liq=Ftot0liq*xco0;%initial CO molar flow in liq Cme=22.2;%molar volume of MeOH in mol/L at 105C and 10-40 bar rholiq=Cme; Ch2o=52.5;%molar volume of water in mol/L Cdmc=11.8;%molar volume of DMC in mol/L q=Fme0/Cme; %q=((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4 )+Y(5))))) %assume MeOH takes over the liquid phase property %mol ratio times 22.2 mol/L gives me the concentrations, which is usable %for the rate laws time=tau(i);% Picking a tau [s] a=[Fme0 Fo20 Fco0 0 0 0 Cme]; %initial condition for 9 equations to solve error=1; count=0; while error>10^(-4); CSTR_func=@(Y)([-Y(1)+Fme0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*2.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1 )/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); -Y(2)+Fco0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y
  52. 52. 52 (5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/( Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5) /(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; -Y(3)+Fo20- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y( 1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*( Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; - Y(4)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(5)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(6)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o* (Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5]); options=optimset('fsolve'); options.MaxFunEvals = 50000; options.MaxIter = 2000; options.TolFun=1e-28; roots=real(fsolve(CSTR_func,a,options));%everything in result is in mol/s result(i,:)=real(roots); error=max(abs(a-result(i,:))); a=result(i,:);%redifining initial guess count=count+1; result=abs(result); end conv=(Fo20-result(i,3))/Fo20; sel=result(i,4)*.5/(Fo20-result(i,3)); flow_tot_inlet=Pdmc/(sel*conv)*.5*(1+MR1)/((result(i,1)/sum(result(i,1:6)))*Cme+(result(i,4)/sum(result(i,1:6)))* Cdmc+(result(i,5)/sum(result(i,1:6)))*Ch2o); volCSTR(i)=time*flow_tot_inlet/1000;%CSTR volume in m^3 convCSTR(i)=conv; selCSTR(i)=sel; end figure(13) plot(tau,convCSTR) axis([0,time,0,1]); hold all xlabel('Tau (sec)') ylabel('X') legend('MR1=4','MR1=6','MR1=10','MR1=20','MR1=60')
  53. 53. 53 figure(14) plot(convCSTR,selCSTR) hold all xlabel('X') ylabel('S') legend('MR1=4','MR1=6','MR1=10','MR1=20','MR1=60') axis([0,1,0,1]) figure(15) hold all plot(convCSTR,volCSTR) xlabel('X') ylabel('Volume (m^3)') % axis([0,1,0,250]); legend('MR1=4','MR1=6','MR1=10','MR1=20','MR1=60') box on end MR1=15; MR2s=logspace(1.380211242,2,5); %Vary MR2 for j=1:length(Temps) for i=1:length(tau) MR2=MR2s(j); Treact=130+273.15;%temperature in K %rho=Ptot0/(1);%mol/L Ptot0bar=40*1.01325;%total inlet pressure in bar k1=1.4*10.^(11)*exp(-24000/(R*Treact)); k2=5.6*10.^(12)*exp(-22700/(R*Treact)); xo20=(Ptot0bar/(MR2+1))/(Kho2);%initial O2 mol frac in liquid xco0=(MR2*Ptot0bar)/(1+MR2)/(Khco);%initial CO mol frac in liquid xme0=1-xo20-xco0;%initial MeOH mol frac in liquid Ftot0liq=MR1*n0/xme0;%initial total molar flow rate in liq Fme0=Ftot0liq*xme0;%initial MeOH molar flow in liq Fo20=n0;%O2 initial flow rate in vap Fco0=MR2*n0;%CO initial flow rate in vap Fo20liq=Ftot0liq*xo20;%initial O2 molar flow in liq Fco0liq=Ftot0liq*xco0;%initial CO molar flow in liq Cme=22.2;%molar volume of MeOH in mol/L at 105C and 10-40 bar rholiq=Cme; Ch2o=52.5;%molar volume of water in mol/L Cdmc=11.8;%molar volume of DMC in mol/L q=Fme0/Cme; time=tau(i);% Picking a tau [s] a=[Fme0 Fo20 Fco0 0 0 0 Cme]; %initial condition for 9 equations to solve error=1; count=0; while error>10^(-4); CSTR_func=@(Y)([-Y(1)+Fme0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y
  54. 54. 54 (5))))).*2.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1 )/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); -Y(2)+Fco0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/( Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5) /(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; -Y(3)+Fo20- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y( 1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*( Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; - Y(4)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(5)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(6)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o* (Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5]); options=optimset('fsolve'); options.MaxFunEvals = 50000; options.MaxIter = 2000; options.TolFun=1e-28; roots=real(fsolve(CSTR_func,a,options));%everything in result is in mol/s result(i,:)=real(roots); error=max(abs(a-result(i,:))); a=result(i,:);%redifining initial guess count=count+1; result=abs(result); end conv=(Fo20-result(i,3))/Fo20; sel=result(i,4)*.5/(Fo20-result(i,3)); flow_tot_inlet=Pdmc/(sel*conv)*.5*(1+MR1)/((result(i,1)/sum(result(i,1:6)))*Cme+(result(i,4)/sum(result(i,1:6)))* Cdmc+(result(i,5)/sum(result(i,1:6)))*Ch2o); volCSTR(i)=time*flow_tot_inlet/1000;%CSTR volume in m^3 convCSTR(i)=conv; selCSTR(i)=sel; end figure(16) plot(tau,convCSTR) axis([0,time,0,1]); hold all
  55. 55. 55 xlabel('Tau (sec)') ylabel('X') legend('MR2=24','MR2=34','MR2=49','MR2=70','MR2=100') figure(17) plot(convCSTR,selCSTR) hold all xlabel('X') ylabel('S') legend('MR2=24','MR2=34','MR2=49','MR2=70','MR2=100') axis([0,1,0,1]) figure(18) hold all plot(convCSTR,volCSTR) xlabel('X') ylabel('Volume (m^3)') %axis([0,1,0,250]); legend('MR2=24','MR2=34','MR2=49','MR2=70','MR2=100') box on end %single vs multi CSTR Mme=32.04;%molar mass of methanol in g/mol Mco=28.01;%molar mass of CO in g/mol Mdmc=90.08;%molar mass of DMC in g/mol Mh2o=18.01;%moalr mass of water in g/mol Mo2=15.9994*2;%molar mass of O2 in g/mol Mco2=44.01;%molar mass of CO2 in g/mol Pdmc=150*10.^6*1000/Mdmc/8400/3600;%target flow rate of DMC in mol/s Kho2=3179;%O2 Henry's const in bar Khco=3107;%CO Henry's const in bar Khco2=158;%CO2 Henry's const in bar Ame=5.31301;%Antoine for methanol Bme=1676.569; Cme=-21.728;%Antoine range (80-210C) Ah2o=4.6543; Bh2o=1435.264; Ch2o=-64.848; Admc=4.77616; Bdmc=1721.904; Cdmc=-37.959; % Psatme=10.^(Ame-(Bme/(Treact+Cme)));%Inputs T in K and outputs Psat in bar % Psath2o=10.^(Ah2o-(Bh2o/(Treact+Ch2o)));%Inputs T in K and outputs Psat in bar % Psatdmc=10.^(Admc-(Bdmc/(Treact+Cdmc)));%Inputs T in K and outputs Psat in bar Ptot0=30;%paressure in atm at inlet R=1.9872041;%IG const in cal K-1 mol-1 RR=.082057;%IG const in L atm K-1 mol-1 tau=logspace(-3,1.0887,60); MR1=15;%MR between MeOH to O2 MR2=26;%MR between CO to O2 (Explosion Limit is less than 24) n0=58.3333;%inlet oxygen molar flow rate
  56. 56. 56 for i=1:length(tau) Treact=130+273.15;%temperature in K %rho=Ptot0/(1);%mol/L Ptot0bar=Ptot0*1.01325;%total inlet pressure in bar k1=1.4*10.^(11)*exp(-24000/(R*Treact)); k2=5.6*10.^(12)*exp(-22700/(R*Treact)); xo20=(Ptot0bar/(MR2+1))/(Kho2);%initial O2 mol frac in liquid xco0=(MR2*Ptot0bar)/(1+MR2)/(Khco);%initial CO mol frac in liquid xme0=1-xo20-xco0;%initial MeOH mol frac in liquid Ftot0liq=MR1*n0/xme0;%initial total molar flow rate in liq Fme0=Ftot0liq*xme0;%initial MeOH molar flow in liq Fo20=n0;%O2 initial flow rate in vap Fco0=MR2*n0;%CO initial flow rate in vap Fo20liq=Ftot0liq*xo20;%initial O2 molar flow in liq Fco0liq=Ftot0liq*xco0;%initial CO molar flow in liq Cme=22.2;%molar volume of MeOH in mol/L at 105C and 10-40 bar rholiq=Cme; Ch2o=52.5;%molar volume of water in mol/L Cdmc=11.8;%molar volume of DMC in mol/L q=Fme0/Cme; %q=((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4 )+Y(5))))) %assume MeOH takes over the liquid phase property %mol ratio times 22.2 mol/L gives me the concentrations, which is usable %for the rate laws time=tau(i);% Picking a tau [s] a=[Fme0 Fo20 Fco0 0 0 0 Cme]; %initial condition for 9 equations to solve error=1; count=0; while error>10^(-4); CSTR_func=@(Y)([-Y(1)+Fme0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*2.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1 )/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); -Y(2)+Fco0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/( Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5) /(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; -Y(3)+Fo20- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y( 1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*( Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5;
  57. 57. 57 - Y(4)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(5)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(6)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o* (Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5]); options=optimset('fsolve'); options.MaxFunEvals = 50000; options.MaxIter = 2000; options.TolFun=1e-28; roots=real(fsolve(CSTR_func,a,options));%everything in result is in mol/s result(i,:)=real(roots); error=max(abs(a-result(i,:))); a=result(i,:);%redifining initial guess count=count+1; result=abs(result); end conv=(Fo20-result(i,3))/Fo20; sel=result(i,4)*.5/(Fo20-result(i,3)); flow_tot_inlet=Pdmc/(sel*conv)*.5*(1+MR1)/((result(i,1)/sum(result(i,1:6)))*Cme+(result(i,4)/sum(result(i,1:6)))* Cdmc+(result(i,5)/sum(result(i,1:6)))*Ch2o); volCSTR(i)=time*flow_tot_inlet;%CSTR liquid volume in L convCSTR(i)=conv; selCSTR(i)=sel; end convCSTRsingle=convCSTR; selCSTRsingle=selCSTR; volCSTRsingle=volCSTR; tausingle=tau; Fo20_old=Fo20; %dividing it into 3 CSTRs of identical residence time % tau(1:20)=linspace(0.001,45,20); % tau(21:40)=linspace(46,90,20); % tau(41:60)=linspace(91,10^2.1306,20); for i=1:54 Treact=130+273.15;%temperature in K %rho=Ptot0/(1);%mol/L Ptot0bar=Ptot0*1.01325;%total inlet pressure in bar k1=1.4*10.^(11)*exp(-24000/(R*Treact)); k2=5.6*10.^(12)*exp(-22700/(R*Treact));
  58. 58. 58 xo20=(Ptot0bar/(MR2+1))/(Kho2);%initial O2 mol frac in liquid xco0=(MR2*Ptot0bar)/(1+MR2)/(Khco);%initial CO mol frac in liquid xme0=1-xo20-xco0;%initial MeOH mol frac in liquid Ftot0liq=MR1*n0/xme0;%initial total molar flow rate in liq Fme0=Ftot0liq*xme0;%initial MeOH molar flow in liq Fo20=n0;%O2 initial flow rate in vap Fco0=MR2*n0;%CO initial flow rate in vap Fo20liq=Ftot0liq*xo20;%initial O2 molar flow in liq Fco0liq=Ftot0liq*xco0;%initial CO molar flow in liq Cme=22.2;%molar volume of MeOH in mol/L at 105C and 10-40 bar rholiq=Cme; Ch2o=52.5;%molar volume of water in mol/L Cdmc=11.8;%molar volume of DMC in mol/L q=Fme0/Cme; time=tau(i);% Picking a tau [s] a=[Fme0 Fo20 Fco0 0 0 0 Cme]; %initial condition for 9 equations to solve error=1; count=0; while error>10^(-4); %below takes into account average variable liquid phase mole fractions CSTR_func=@(Y)([-Y(1)+Fme0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*2.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1 )/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); -Y(2)+Fco0- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/( Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5) /(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; -Y(3)+Fo20- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y( 1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5)- ((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y (5))))).*.5.*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*( Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5; - Y(4)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(5)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*(k1.*(Y(1)./(Y(1)+Y(4)+Y(5))).^2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*( Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^2.5); - Y(6)+((Y(1)+Y(4)+Y(5))/(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o*(Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y (4)+Y(5))))).*time.*k2.*(Y(3).*Ptot0bar./(Kho2.*(Y(2)+Y(3)+Y(6)))).^.5.*(Cme*(Y(1)/(Y(1)+Y(4)+Y(5)))+Ch2o* (Y(5)/(Y(1)+Y(4)+Y(5)))+Cdmc*(Y(4)/(Y(1)+Y(4)+Y(5)))).^.5]); options=optimset('fsolve');

Γ—