SlideShare a Scribd company logo
1 of 48
Download to read offline
Ice Profile Classification
          Based on ISO 12494


                      Presented by:
            Matthew Wadham-Gagnon


                         2012-02-12
                    WinterWind 2013
Co-authors

Dominic Bolduc, TCE, QC, Canada

Bruno Boucher, TCE, QC, Canada

Amélie Camion, Repower Systems Inc, QC, Canada

Jens Petersen, Repower Systems SE, Germany

Hannes Friedrich, Repower Systems SE, Germany




                         2
Content

• Introduction to TCE

• Motivation

• Methodology
   – Measurement Campaign

   – Ice profile classification using ISO 12494

• Example of data for one icing event

• Summary for winter 2011-2012

• Conclusions/Further work
TCE infrastructure location
                                 TCE R&D wind farm

                    TCE office




                 Over 900MW in operation


             4
TCE R&D Wind Farm
• Two 2.05 MW Repower
  MM92 CCV wind turbines

• Located in Riviere-au-
  Renard, Québec, Canada

• Icing & complex terrain

• Commissionned in March
  2010

• Research, development
  and technology transfer
  projects involving
  northern climates and
  complex terrain.



                                     5
                             www.eolien.qc.ca
TCE 126m Met Mast

    Compliant with
     CSA-S37-01

(DLC: 40 mm of ice
       and 57 m/s)




                     6
TCE 126m Met Mast
•   5 levels of unheated class 1
    anemometers

•   3 levels of heated anemometers

•   2 levels of heated and unheated
    wind vanes

•   Ceilometer to detect cloud
    height

•   4 levels of thermometers

•   Hygrometer

1Hz data acquisition in Osisoft PI


                                      7
TCE Micro Grid




           8
   www.eolien.qc.ca
TCE Micro Grid




           9
   www.eolien.qc.ca
Infrastructure Topographic Layout



                projected




    projected




                  10
Objective/Motivations
What:
• Quantify ice load during different icing events




Why:
• To validate and/or improve theoretical ice accretion
  models
• To correlate with meteorological measurements,
  production loss and ice induced vibration
• To evaluate the performance of anti-icing and de-icing
  technologies

                              11
Ice Measurement Campaign

• Ongoing since October 2011
• Intended to continue until at least winter 2013-2014




•   Observations during icing events
•   Remote Cameras
•   Ice throw
•   Meteorological and production data




                              12
Observations - Blades
• Pictures taken from the ground




23 days of observed ice on blades (Winter 2011-2012)


                            13
Observations – Nacelle Weather Mast
• Remote Camera on Nacelle – 5 min intervals

800+ hours of icing on nacelle weather mast (Winter 2011-2012)




                             14
Ice throw
• Shape, size, weight, distance from tower




• 150+ fragments of ice from blades collected to date


                             15
Estimating Ice Load using ISO 12494
• ISO 12494 – for RIME
   – Ice Class (IC) for Rime (R) scale 1 to 10 according to kg/m of ice on
     structure, shape and dimensions of ice varies depending on
     structure size and shape




                                   16
Estimating Ice Load using ISO 12494
• ISO 12494 – for GLAZE (Freezing Rain)
   – Ice Class (IC) for Glaze (G) scale 1 to 6 according to ice thickness




                                   17
Nacelle Weather Mast Load Classification
• Weather mast ice load estimation
   – “D” measured,
   – “L” estimated, higher error but more data




                                                 D




                                  18
Blade Ice Load Classification
• Blade ice load estimation
   – “L” measured
   – “D” estimated
   – Limited amount of pictures covering the duration of an icing event.




                                   19
Ice throw Load Classification
• Used to validate blade ice load
   – More accurate measurement
   – Precise time of ice shed unknown



                                        L



                     D
                             h                   W
                                            W’




                                 20
Ice Class Rime 1 (ICR1) – 0 to 0.5 kg/m




                   21
Ice Class Rime 2 (ICR2) – 0.5 to 0.9 kg/m




                    22
Ice Class Rime 3 (ICR3) – 0.9 to 1.6 kg/m




                    23
Ice Class Rime 4 (ICR4) – 1.6 to 2.8 kg/m




                    24
Ice Class Rime 5 (ICR5) – 2.8 to 5.0 kg/m




                    25
Example Icing Event
• April 21 to 23, 2012
• Rime, ICR3 to ICR5




                         26
Meteorological Icing (Ice Sensor)
                    Met. Icing (ice sensor)




1.0

0.8

0.6

0.4

0.2

0.0




                         27
Met. Icing (Cloud Height & Temp.)
                     Met. Icing (ice sensor)                   Met. Icing (CH & T)




                              WEC1 Temp        MMV2 78m T   MMV2 11m Min CH
            14
            12                                                                       140
            10                                                                       120
             8                                                                       100
Temp (oC)




             6
             4                                                                       80
             2                                                                       60
             0                                                                       40
            -2
            -4                                                                       20
            -6                                                                       0




                                                                                     CH (m)
                                                28
Instrumental Icing (WEC unheated anemo)
                    Met. Icing (ice sensor)   Met. Icing (CH & T)   Instr. Icing (WEC2)




           30

           25

           20
WS (m/s)




           15

           10

            5

            0



                                                WS1     WS2




                                                29
Instr. Icing (MMV2 126m unheat anemo)
                Met. Icing (ice sensor)   Met. Icing (CH & T)    Instr. Icing (WEC2)   Instr. Icing (126m)




           35
           30
           25
WS (m/s)




           20
           15
           10
            5
            0



                                                MMV2 126m U     MMV2 126m H




                                                        30
Instr. Icing (MMV2 80m unheat anemo)
                Met. Icing (ice sensor)    Met. Icing (CH & T)         Instr. Icing (WEC2)
                Instr. Icing (126m)        Instr. Icing (78m)




           35
           30
           25
WS (m/s)




           20
           15
           10
            5
            0



                                          MMV2 80m U      MMV2 80m H




                                                 31
Instr. Icing (MMV2 34m unheat anemo)
                Met. Icing (ice sensor)    Met. Icing (CH & T)         Instr. Icing (WEC2)
                Instr. Icing (126m)        Instr. Icing (78m)          Instr. Icing (34m)




           35
           30
           25
WS (m/s)




           20
           15
           10
            5
            0



                                          MMV2 34m U      MMV2 34m H




                                                 32
WEC1 Production Loss
                    Met. Icing (ice sensor)   Met. Icing (CH & T)          Instr. Icing (WEC2)   Instr. Icing (126m)
                    Instr. Icing (78m)        Instr. Icing (34m)           Prod. Loss (WEC1)




             3000

             2500

             2000
Power (kW)




             1500

             1000

              500

                0



                                                                   Power     CPC




                                                                   33
Production Loss (WEC2)
                    Met. Icing (ice sensor)   Met. Icing (CH & T)          Instr. Icing (WEC2)   Instr. Icing (126m)
                    Instr. Icing (78m)        Instr. Icing (34m)           Prod. Loss (WEC1)     Prod. Loss (WEC2)




             3000

             2500

             2000
Power (kW)




             1500

             1000

              500

                0



                                                                   Power     CPC




                                                                   34
Nacelle Weather Mast Ice Load
          Met. Icing (ice sensor)   Met. Icing (CH & T)   Instr. Icing (WEC2)
          Instr. Icing (126m)       Instr. Icing (78m)    Instr. Icing (34m)
          Prod. Loss (WEC1)         Prod. Loss (WEC2)     Nacelle WM




      5

      4

      3
ICR




      2

      1

      0




                                          Met mast




                                         35
Blade Ice Load
          Met. Icing (ice sensor)   Met. Icing (CH & T)     Instr. Icing (WEC2)   Instr. Icing (126m)
          Instr. Icing (78m)        Instr. Icing (34m)      Prod. Loss (WEC1)     Prod. Loss (WEC2)
          Nacelle WM                Observ.




      5

      4

      3
ICR




      2

      1

      0




                                               Iced Blade    Met mast




                                                      36
Example Icing Event
• April 21 to 23, 2012
• Rime, ICR3 to ICR5




                         37
Power Curve
• Production loss during april 20-23 icing event


             2500




             2000




             1500
Power (kW)




                                                                  Icing Event Data
             1000                                                 Non-iced Production
                                                                  GPC


              500




                0
                    0   5   10       15            20   25   30
                                   WS (m/s)




                                              38
Power Curve
• Power curve estimations based on ice classification and
  production losses of all icing events in Winter 2011-2012

             2500




             2000




             1500
Power (kW)




                                                                Non-iced Prod.
                                                                GPC
             1000
                                                                ICR2&3

                                                                ICR4&5
              500




                0
                    0   5   10     15            20   25   30
                                 WS (m/s)




                                            39
Nacelle Weather Mast Load Classification
• Weather mast occurrence of icing severity over the course
  of the winter




                            40
Winter 2011-2012 in numbers

Meteorological Icing      ~200 hours
Instrumental Icing        ~400 hours
Nacelle WM icing          800+ hours
Ice observed on blades    23 days
Production Loss           ~140 hours
Production Loss (% AEP)   ~1.5%
Hours of ICR2&3           ~300 hours
Hours of ICR4&5           ~100 hours
Hours of Glaze            ~100 hours




                     41
Conclusions
•   Improved understanding of the severity of icing events

•   Measurement Campaign database can be used to validate
    simulation models (e.g. weather, ice accretion)

•   Methodology can be applied to assessing performance of ice
    protection technologies

•   Nacelle weather mast ice severity correlates to blade icing
    severity

•   Duration of weather mast icing generally much longer than
    blade icing

•   How to make measurement of icing severity on blades could
    be more accurate and more frequent?


                                42
Checker board tape
• In order to get a better estimation of blade ice load and
  position along span of blade




                            43
Hub Camera




     44
Ongoing – Automation of Image Analysis

                                 ICR= 5




       In Collaboration with:


                            45
References

IEA Wind Task 19, Expert Group Study on Recommended Practices: 13. Wind Energy Projects in Cold
Climates, 1. Edition 2011

ISO 12494:2001, Atmospehiric Icing of Structures, International Organisation for Standardization, 2001




                                                  46
Thank you, Tack, Danke, Merci!
Matthew Wadham-Gagnon, eng, M.eng
Project Lead
mgagnon@eolien.qc.ca

70, rue Bolduc, Gaspé (Québec) G4X 1G2
Canada
Tél. : +1 418 368-6162

More Related Content

What's hot

What's hot (8)

Conceptos BáSicos de ecuaciones diferenciales
Conceptos BáSicos de ecuaciones diferencialesConceptos BáSicos de ecuaciones diferenciales
Conceptos BáSicos de ecuaciones diferenciales
 
Propietats matèria
Propietats matèriaPropietats matèria
Propietats matèria
 
01 teorema de tales enunciat
01 teorema de tales enunciat01 teorema de tales enunciat
01 teorema de tales enunciat
 
ÓPTICA, FÍSICA
ÓPTICA, FÍSICAÓPTICA, FÍSICA
ÓPTICA, FÍSICA
 
L'origen de l'univers
L'origen de l'universL'origen de l'univers
L'origen de l'univers
 
Corriente
CorrienteCorriente
Corriente
 
Ejercicio 4.37-t
Ejercicio 4.37-tEjercicio 4.37-t
Ejercicio 4.37-t
 
Obtener la gravedad
Obtener la gravedadObtener la gravedad
Obtener la gravedad
 

Similar to Ice profile classification - Matthew Wadham-Gagnon

DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...grssieee
 
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...grssieee
 
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...grssieee
 
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...grssieee
 
Lehtomäki ville
Lehtomäki villeLehtomäki ville
Lehtomäki villeWinterwind
 
Method for estimating wind turbine production losses due to icing Ville Turki...
Method for estimating wind turbine production losses due to icing Ville Turki...Method for estimating wind turbine production losses due to icing Ville Turki...
Method for estimating wind turbine production losses due to icing Ville Turki...Winterwind
 
TRAC Project Workshop 2 Presentation 2
TRAC Project Workshop 2 Presentation 2TRAC Project Workshop 2 Presentation 2
TRAC Project Workshop 2 Presentation 2Shanshan Cheng
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSUMARDIONO .
 
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 NewOriginal Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 NewAUTHELECTRONIC
 
KHRI-Webinar (22-04-2020)-Introduction to Performance Grade Bitumen -Er. T K ...
KHRI-Webinar (22-04-2020)-Introduction to Performance Grade Bitumen -Er. T K ...KHRI-Webinar (22-04-2020)-Introduction to Performance Grade Bitumen -Er. T K ...
KHRI-Webinar (22-04-2020)-Introduction to Performance Grade Bitumen -Er. T K ...SandipPaul46
 
Original P-Channel Mosfet NTD2955T4G 2955G 2955 60V 12A TO-252 New On Semico...
Original  P-Channel Mosfet NTD2955T4G 2955G 2955 60V 12A TO-252 New On Semico...Original  P-Channel Mosfet NTD2955T4G 2955G 2955 60V 12A TO-252 New On Semico...
Original P-Channel Mosfet NTD2955T4G 2955G 2955 60V 12A TO-252 New On Semico...AUTHELECTRONIC
 
UTAS Model 0871ND Ice Detector
UTAS Model 0871ND Ice Detector UTAS Model 0871ND Ice Detector
UTAS Model 0871ND Ice Detector James Ericson
 
Besi - TSV Summit 2015 - Handout
Besi - TSV Summit 2015 - HandoutBesi - TSV Summit 2015 - Handout
Besi - TSV Summit 2015 - HandoutHugo Pristauz
 
Pump out tests in alluvial sands – a case study
Pump out tests in alluvial sands – a case studyPump out tests in alluvial sands – a case study
Pump out tests in alluvial sands – a case studyInfocengrs63
 
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDeltares
 
Centennial Talk Hydrates
Centennial Talk HydratesCentennial Talk Hydrates
Centennial Talk Hydratesstalnaker
 
TMQC-Pipeline NDT2015
TMQC-Pipeline NDT2015TMQC-Pipeline NDT2015
TMQC-Pipeline NDT2015Ping Hung Lee
 

Similar to Ice profile classification - Matthew Wadham-Gagnon (20)

DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
 
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
 
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
 
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
TH1.T04.2_MULTI-FREQUENCY MICROWAVE EMISSION OF THE EAST ANTARCTIC PLATEAU_IG...
 
hema h.pptx
hema h.pptxhema h.pptx
hema h.pptx
 
Lehtomäki ville
Lehtomäki villeLehtomäki ville
Lehtomäki ville
 
Sleipner, Norway
Sleipner, NorwaySleipner, Norway
Sleipner, Norway
 
Method for estimating wind turbine production losses due to icing Ville Turki...
Method for estimating wind turbine production losses due to icing Ville Turki...Method for estimating wind turbine production losses due to icing Ville Turki...
Method for estimating wind turbine production losses due to icing Ville Turki...
 
TRAC Project Workshop 2 Presentation 2
TRAC Project Workshop 2 Presentation 2TRAC Project Workshop 2 Presentation 2
TRAC Project Workshop 2 Presentation 2
 
bitumen.ppsx
bitumen.ppsxbitumen.ppsx
bitumen.ppsx
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
 
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 NewOriginal Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
 
KHRI-Webinar (22-04-2020)-Introduction to Performance Grade Bitumen -Er. T K ...
KHRI-Webinar (22-04-2020)-Introduction to Performance Grade Bitumen -Er. T K ...KHRI-Webinar (22-04-2020)-Introduction to Performance Grade Bitumen -Er. T K ...
KHRI-Webinar (22-04-2020)-Introduction to Performance Grade Bitumen -Er. T K ...
 
Original P-Channel Mosfet NTD2955T4G 2955G 2955 60V 12A TO-252 New On Semico...
Original  P-Channel Mosfet NTD2955T4G 2955G 2955 60V 12A TO-252 New On Semico...Original  P-Channel Mosfet NTD2955T4G 2955G 2955 60V 12A TO-252 New On Semico...
Original P-Channel Mosfet NTD2955T4G 2955G 2955 60V 12A TO-252 New On Semico...
 
UTAS Model 0871ND Ice Detector
UTAS Model 0871ND Ice Detector UTAS Model 0871ND Ice Detector
UTAS Model 0871ND Ice Detector
 
Besi - TSV Summit 2015 - Handout
Besi - TSV Summit 2015 - HandoutBesi - TSV Summit 2015 - Handout
Besi - TSV Summit 2015 - Handout
 
Pump out tests in alluvial sands – a case study
Pump out tests in alluvial sands – a case studyPump out tests in alluvial sands – a case study
Pump out tests in alluvial sands – a case study
 
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
 
Centennial Talk Hydrates
Centennial Talk HydratesCentennial Talk Hydrates
Centennial Talk Hydrates
 
TMQC-Pipeline NDT2015
TMQC-Pipeline NDT2015TMQC-Pipeline NDT2015
TMQC-Pipeline NDT2015
 

More from Winterwind

Kvt mapping of_icing
Kvt mapping of_icingKvt mapping of_icing
Kvt mapping of_icingWinterwind
 
Bergström hans
Bergström hansBergström hans
Bergström hansWinterwind
 
Bergström fredrik
Bergström fredrikBergström fredrik
Bergström fredrikWinterwind
 
Byrkjedal øyvind
Byrkjedal øyvindByrkjedal øyvind
Byrkjedal øyvindWinterwind
 
Delle monache luca
Delle monache lucaDelle monache luca
Delle monache lucaWinterwind
 
Hietanen jarmo
Hietanen jarmoHietanen jarmo
Hietanen jarmoWinterwind
 
Hudecz adriana
Hudecz adrianaHudecz adriana
Hudecz adrianaWinterwind
 
Huttunen saara
Huttunen saaraHuttunen saara
Huttunen saaraWinterwind
 
Jordaens pieter jan
Jordaens pieter janJordaens pieter jan
Jordaens pieter janWinterwind
 
Meyer sebastian
Meyer sebastianMeyer sebastian
Meyer sebastianWinterwind
 
Olsson esbjörn
Olsson esbjörnOlsson esbjörn
Olsson esbjörnWinterwind
 
Sell dr. stephan
Sell dr. stephanSell dr. stephan
Sell dr. stephanWinterwind
 

More from Winterwind (20)

Kvt mapping of_icing
Kvt mapping of_icingKvt mapping of_icing
Kvt mapping of_icing
 
Bergström hans
Bergström hansBergström hans
Bergström hans
 
Bergström fredrik
Bergström fredrikBergström fredrik
Bergström fredrik
 
Byrkjedal øyvind
Byrkjedal øyvindByrkjedal øyvind
Byrkjedal øyvind
 
Campbell iain
Campbell iainCampbell iain
Campbell iain
 
Davis neil
Davis neilDavis neil
Davis neil
 
Delle monache luca
Delle monache lucaDelle monache luca
Delle monache luca
 
Derrick alan
Derrick alanDerrick alan
Derrick alan
 
Hietanen jarmo
Hietanen jarmoHietanen jarmo
Hietanen jarmo
 
Hudecz adriana
Hudecz adrianaHudecz adriana
Hudecz adriana
 
Hutton gail
Hutton gailHutton gail
Hutton gail
 
Huttunen saara
Huttunen saaraHuttunen saara
Huttunen saara
 
Jeffs justin
Jeffs justinJeffs justin
Jeffs justin
 
Jordaens pieter jan
Jordaens pieter janJordaens pieter jan
Jordaens pieter jan
 
Karlsson timo
Karlsson timoKarlsson timo
Karlsson timo
 
Meyer sebastian
Meyer sebastianMeyer sebastian
Meyer sebastian
 
Olsson esbjörn
Olsson esbjörnOlsson esbjörn
Olsson esbjörn
 
Ribeiro carla
Ribeiro carlaRibeiro carla
Ribeiro carla
 
Sell dr. stephan
Sell dr. stephanSell dr. stephan
Sell dr. stephan
 
Sukosd attila
Sukosd attilaSukosd attila
Sukosd attila
 

Recently uploaded

AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAnitaRaj43
 
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsContinuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsLeah Henrickson
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctBrainSell Technologies
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftshyamraj55
 
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdfFrisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdfAnubhavMangla3
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe中 央社
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxjbellis
 
How to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfHow to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfdanishmna97
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Skynet Technologies
 
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Paige Cruz
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxFIDO Alliance
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data SciencePaolo Missier
 
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdfMuhammad Subhan
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024Lorenzo Miniero
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfalexjohnson7307
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentationyogeshlabana357357
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...marcuskenyatta275
 
Easier, Faster, and More Powerful – Notes Document Properties Reimagined
Easier, Faster, and More Powerful – Notes Document Properties ReimaginedEasier, Faster, and More Powerful – Notes Document Properties Reimagined
Easier, Faster, and More Powerful – Notes Document Properties Reimaginedpanagenda
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptxFIDO Alliance
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightSafe Software
 

Recently uploaded (20)

AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
 
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsContinuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage Intacct
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoft
 
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdfFrisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
Frisco Automating Purchase Orders with MuleSoft IDP- May 10th, 2024.pptx.pdf
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptx
 
How to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cfHow to Check CNIC Information Online with Pakdata cf
How to Check CNIC Information Online with Pakdata cf
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
 
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptx
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data Science
 
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdf
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentation
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
 
Easier, Faster, and More Powerful – Notes Document Properties Reimagined
Easier, Faster, and More Powerful – Notes Document Properties ReimaginedEasier, Faster, and More Powerful – Notes Document Properties Reimagined
Easier, Faster, and More Powerful – Notes Document Properties Reimagined
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and Insight
 

Ice profile classification - Matthew Wadham-Gagnon

  • 1. Ice Profile Classification Based on ISO 12494 Presented by: Matthew Wadham-Gagnon 2012-02-12 WinterWind 2013
  • 2. Co-authors Dominic Bolduc, TCE, QC, Canada Bruno Boucher, TCE, QC, Canada Amélie Camion, Repower Systems Inc, QC, Canada Jens Petersen, Repower Systems SE, Germany Hannes Friedrich, Repower Systems SE, Germany 2
  • 3. Content • Introduction to TCE • Motivation • Methodology – Measurement Campaign – Ice profile classification using ISO 12494 • Example of data for one icing event • Summary for winter 2011-2012 • Conclusions/Further work
  • 4. TCE infrastructure location TCE R&D wind farm TCE office Over 900MW in operation 4
  • 5. TCE R&D Wind Farm • Two 2.05 MW Repower MM92 CCV wind turbines • Located in Riviere-au- Renard, Québec, Canada • Icing & complex terrain • Commissionned in March 2010 • Research, development and technology transfer projects involving northern climates and complex terrain. 5 www.eolien.qc.ca
  • 6. TCE 126m Met Mast Compliant with CSA-S37-01 (DLC: 40 mm of ice and 57 m/s) 6
  • 7. TCE 126m Met Mast • 5 levels of unheated class 1 anemometers • 3 levels of heated anemometers • 2 levels of heated and unheated wind vanes • Ceilometer to detect cloud height • 4 levels of thermometers • Hygrometer 1Hz data acquisition in Osisoft PI 7
  • 8. TCE Micro Grid 8 www.eolien.qc.ca
  • 9. TCE Micro Grid 9 www.eolien.qc.ca
  • 10. Infrastructure Topographic Layout projected projected 10
  • 11. Objective/Motivations What: • Quantify ice load during different icing events Why: • To validate and/or improve theoretical ice accretion models • To correlate with meteorological measurements, production loss and ice induced vibration • To evaluate the performance of anti-icing and de-icing technologies 11
  • 12. Ice Measurement Campaign • Ongoing since October 2011 • Intended to continue until at least winter 2013-2014 • Observations during icing events • Remote Cameras • Ice throw • Meteorological and production data 12
  • 13. Observations - Blades • Pictures taken from the ground 23 days of observed ice on blades (Winter 2011-2012) 13
  • 14. Observations – Nacelle Weather Mast • Remote Camera on Nacelle – 5 min intervals 800+ hours of icing on nacelle weather mast (Winter 2011-2012) 14
  • 15. Ice throw • Shape, size, weight, distance from tower • 150+ fragments of ice from blades collected to date 15
  • 16. Estimating Ice Load using ISO 12494 • ISO 12494 – for RIME – Ice Class (IC) for Rime (R) scale 1 to 10 according to kg/m of ice on structure, shape and dimensions of ice varies depending on structure size and shape 16
  • 17. Estimating Ice Load using ISO 12494 • ISO 12494 – for GLAZE (Freezing Rain) – Ice Class (IC) for Glaze (G) scale 1 to 6 according to ice thickness 17
  • 18. Nacelle Weather Mast Load Classification • Weather mast ice load estimation – “D” measured, – “L” estimated, higher error but more data D 18
  • 19. Blade Ice Load Classification • Blade ice load estimation – “L” measured – “D” estimated – Limited amount of pictures covering the duration of an icing event. 19
  • 20. Ice throw Load Classification • Used to validate blade ice load – More accurate measurement – Precise time of ice shed unknown L D h W W’ 20
  • 21. Ice Class Rime 1 (ICR1) – 0 to 0.5 kg/m 21
  • 22. Ice Class Rime 2 (ICR2) – 0.5 to 0.9 kg/m 22
  • 23. Ice Class Rime 3 (ICR3) – 0.9 to 1.6 kg/m 23
  • 24. Ice Class Rime 4 (ICR4) – 1.6 to 2.8 kg/m 24
  • 25. Ice Class Rime 5 (ICR5) – 2.8 to 5.0 kg/m 25
  • 26. Example Icing Event • April 21 to 23, 2012 • Rime, ICR3 to ICR5 26
  • 27. Meteorological Icing (Ice Sensor) Met. Icing (ice sensor) 1.0 0.8 0.6 0.4 0.2 0.0 27
  • 28. Met. Icing (Cloud Height & Temp.) Met. Icing (ice sensor) Met. Icing (CH & T) WEC1 Temp MMV2 78m T MMV2 11m Min CH 14 12 140 10 120 8 100 Temp (oC) 6 4 80 2 60 0 40 -2 -4 20 -6 0 CH (m) 28
  • 29. Instrumental Icing (WEC unheated anemo) Met. Icing (ice sensor) Met. Icing (CH & T) Instr. Icing (WEC2) 30 25 20 WS (m/s) 15 10 5 0 WS1 WS2 29
  • 30. Instr. Icing (MMV2 126m unheat anemo) Met. Icing (ice sensor) Met. Icing (CH & T) Instr. Icing (WEC2) Instr. Icing (126m) 35 30 25 WS (m/s) 20 15 10 5 0 MMV2 126m U MMV2 126m H 30
  • 31. Instr. Icing (MMV2 80m unheat anemo) Met. Icing (ice sensor) Met. Icing (CH & T) Instr. Icing (WEC2) Instr. Icing (126m) Instr. Icing (78m) 35 30 25 WS (m/s) 20 15 10 5 0 MMV2 80m U MMV2 80m H 31
  • 32. Instr. Icing (MMV2 34m unheat anemo) Met. Icing (ice sensor) Met. Icing (CH & T) Instr. Icing (WEC2) Instr. Icing (126m) Instr. Icing (78m) Instr. Icing (34m) 35 30 25 WS (m/s) 20 15 10 5 0 MMV2 34m U MMV2 34m H 32
  • 33. WEC1 Production Loss Met. Icing (ice sensor) Met. Icing (CH & T) Instr. Icing (WEC2) Instr. Icing (126m) Instr. Icing (78m) Instr. Icing (34m) Prod. Loss (WEC1) 3000 2500 2000 Power (kW) 1500 1000 500 0 Power CPC 33
  • 34. Production Loss (WEC2) Met. Icing (ice sensor) Met. Icing (CH & T) Instr. Icing (WEC2) Instr. Icing (126m) Instr. Icing (78m) Instr. Icing (34m) Prod. Loss (WEC1) Prod. Loss (WEC2) 3000 2500 2000 Power (kW) 1500 1000 500 0 Power CPC 34
  • 35. Nacelle Weather Mast Ice Load Met. Icing (ice sensor) Met. Icing (CH & T) Instr. Icing (WEC2) Instr. Icing (126m) Instr. Icing (78m) Instr. Icing (34m) Prod. Loss (WEC1) Prod. Loss (WEC2) Nacelle WM 5 4 3 ICR 2 1 0 Met mast 35
  • 36. Blade Ice Load Met. Icing (ice sensor) Met. Icing (CH & T) Instr. Icing (WEC2) Instr. Icing (126m) Instr. Icing (78m) Instr. Icing (34m) Prod. Loss (WEC1) Prod. Loss (WEC2) Nacelle WM Observ. 5 4 3 ICR 2 1 0 Iced Blade Met mast 36
  • 37. Example Icing Event • April 21 to 23, 2012 • Rime, ICR3 to ICR5 37
  • 38. Power Curve • Production loss during april 20-23 icing event 2500 2000 1500 Power (kW) Icing Event Data 1000 Non-iced Production GPC 500 0 0 5 10 15 20 25 30 WS (m/s) 38
  • 39. Power Curve • Power curve estimations based on ice classification and production losses of all icing events in Winter 2011-2012 2500 2000 1500 Power (kW) Non-iced Prod. GPC 1000 ICR2&3 ICR4&5 500 0 0 5 10 15 20 25 30 WS (m/s) 39
  • 40. Nacelle Weather Mast Load Classification • Weather mast occurrence of icing severity over the course of the winter 40
  • 41. Winter 2011-2012 in numbers Meteorological Icing ~200 hours Instrumental Icing ~400 hours Nacelle WM icing 800+ hours Ice observed on blades 23 days Production Loss ~140 hours Production Loss (% AEP) ~1.5% Hours of ICR2&3 ~300 hours Hours of ICR4&5 ~100 hours Hours of Glaze ~100 hours 41
  • 42. Conclusions • Improved understanding of the severity of icing events • Measurement Campaign database can be used to validate simulation models (e.g. weather, ice accretion) • Methodology can be applied to assessing performance of ice protection technologies • Nacelle weather mast ice severity correlates to blade icing severity • Duration of weather mast icing generally much longer than blade icing • How to make measurement of icing severity on blades could be more accurate and more frequent? 42
  • 43. Checker board tape • In order to get a better estimation of blade ice load and position along span of blade 43
  • 45. Ongoing – Automation of Image Analysis ICR= 5 In Collaboration with: 45
  • 46. References IEA Wind Task 19, Expert Group Study on Recommended Practices: 13. Wind Energy Projects in Cold Climates, 1. Edition 2011 ISO 12494:2001, Atmospehiric Icing of Structures, International Organisation for Standardization, 2001 46
  • 47. Thank you, Tack, Danke, Merci!
  • 48. Matthew Wadham-Gagnon, eng, M.eng Project Lead mgagnon@eolien.qc.ca 70, rue Bolduc, Gaspé (Québec) G4X 1G2 Canada Tél. : +1 418 368-6162