Successfully reported this slideshow.
Your SlideShare is downloading. ×

Intelligent load control for heated wind measurement sensors

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Upcoming SlideShare
Derrick alan
Derrick alan
Loading in …3
×

Check these out next

1 of 22 Ad

More Related Content

Viewers also liked (19)

Similar to Intelligent load control for heated wind measurement sensors (20)

Advertisement

Recently uploaded (20)

Advertisement

Intelligent load control for heated wind measurement sensors

  1. 1. Intelligent load control for heated wind measurement sensors Intelligent load control for heated wind measurement sensors A. Krenn1, H. Winkelmeier1, F. Lachinger1 1Energiewerkstatt, Friedburg, Austria Winterwind 2012, Skellefteå/SE
  2. 2. Intelligent load control for heated wind measurement sensors Company Profile Wind Energy •  Wind Measurement •  Project Development •  Planning & Implementation •  Training and Education •  Research & Demonstration Winterwind 2012, Skellefteå/SE
  3. 3. Intelligent load control for heated wind measurement sensors 01 Wind Energy in Austria 02 Test Rig Schareck / Großglockner 03 Wind Measurement Brenner Winterwind 2012, Skellefteå/SE
  4. 4. Intelligent load control for heated wind measurement sensors Wind Energy in Austria State 31.12.2011 •  650 Wind turbines •  1.084 MW installed power •  2,39 TWh electricity generation per year •  3,6 % of Austrian electricity demand Winterwind 2012, Skellefteå/SE
  5. 5. Intelligent load control for heated wind measurement sensors Wind conditions in Austria • • • 3 •• •7 • •4 V med••5,5 - 6,0 m/s •• •• •• • • •• •• 4 • • 4 • •• • •• • •• •• • • 3 • 3 •• • • – •• •• • V med •6,5 • 7,0 m/s 7 •• • •• • • • • •• 4 • V med 5,5 – 6,5 m/s •• 5 10 • • 3 • • V med 6,0 - 7,5 m/s • Winterwind 2012, Skellefteå/SE
  6. 6. Intelligent load control for heated wind measurement sensors Specific wind energy production in Austria Specific wind energy production in different regions of Austria 1200 Eastern Region (106 WT) Northern Region (14 WT) Pre-Alpine Region (23 WT) Alps (13 WT) 1000 800 [kWh/m²] 600 1042 1010 990 961 915 910 907 900 863 861 843 812 798 400 750 745 735 686 665 660 639 614 602 525 501 499 475 460 410 200 0 2003 2004 2005 2006 2007 2008 2009 Winterwind 2012, Skellefteå/SE
  7. 7. Intelligent load control for heated wind measurement sensors 01 Wind Energy in Austria 02 Test Rig Schareck / Großglockner 03 Wind Measurement Brenner Winterwind 2012, Skellefteå/SE
  8. 8. Intelligent load control for heated wind measurement sensors Test Rig Schareck Winterwind 2012, Skellefteå/SE
  9. 9. Intelligent load control for heated wind measurement sensors Measurement setup Producer Type Operating  mode Power  [W] NRG Ice  Free  3 Heated  cup  anemometer 96  W Vaisala WAA252 Heated  cup  anemometer 72  W Thies  A. 2D Heated  2D  Ultrasonic 310  W Thies  A. 2D  Compact Heated  2D  Ultrasonic  compact 250  W Thies  A. Classic Unheated  cup  anemometer -­‐-­‐-­‐-­‐-­‐ Thies  A. Classic Wind  vane 25  W Galltek P63-­‐12 Combined  Thermo-­‐/Hygrosensor -­‐-­‐-­‐-­‐-­‐ Mobotix M12  Dual  Night Webcam  with  infrared  spotlight -­‐-­‐-­‐-­‐-­‐ Winterwind 2012, Skellefteå/SE
  10. 10. Intelligent load control for heated wind measurement sensors Data evaluation Comparison of five different scenarios rsp. icing periods: •  Actual meteorological icing periods based on webcam evaluations •  Actual instrumental icing periods based on webcam evaluations •  Estimated icing periods according to synoptic considerations •  Estimated icing periods according to comparison of heated and unheated anemometers •  Estimated icing periods according to standard algorithms of heated wind measurement sensors Winterwind 2012, Skellefteå/SE
  11. 11. Intelligent load control for heated wind measurement sensors Winterwind 2012, Skellefteå/SE
  12. 12. Intelligent load control for heated wind measurement sensors Winterwind 2012, Skellefteå/SE
  13. 13. Intelligent load control for heated wind measurement sensors Resulting Energy Demand Scenario   Solution  regarding  heating  control   Used  settings   Energy  Consumption   1   Standard  sensor  algorithm   ≤  2°C   100%   2   Comparison  heated/unheated  sensor   ∆vmed  >  2  m/s   29%   3   Relative  humidity  und  temperature   ≥  90%;    ≤ 1°C   55%   Winterwind 2012, Skellefteå/SE
  14. 14. Intelligent load control for heated wind measurement sensors Considerations regarding heating demand •  Theoretically, heating of wind measurement sensors is only necessary during meteorological icing periods •  In case of external power supply units –  Which energy consumption do we have? –  How much energy is available? –  Which data availability do I want to achieve? •  Importance of an advanced load control management •  Possible approaches: –  Info from webcam, difference betw. heated and unh. sensor not available –  Synoptic considerations (equivalent to meteorological icing) •  Overestimation of icing periods, but still ~ 50% saving of energy –  In future - ice detector: current obstacles (350 W heating demand, costs) Winterwind 2012, Skellefteå/SE
  15. 15. Intelligent load control for heated wind measurement sensors 01 Wind Energy in Austria 02 Test Rig Schareck / Großglockner 03 Wind Measurement Brenner Winterwind 2012, Skellefteå/SE
  16. 16. Intelligent load control for heated wind measurement sensors Wind farm Brenner •  2.100 – 2.200m above sea level •  600 W/m2 at hub height (estimated) •  40 days per year icing (estimated) •  19 Wind turbines approved (LTW70 – 2.0 MW) Wind Farm Brenner Winterwind 2012, Skellefteå/SE
  17. 17. Intelligent load control for heated wind measurement sensors Measurement concept LI DAR 03 - Sattelberg Windmessung Steinjoch - 50 m LIDAR 01 - Steinjoch LIDAR 02 - Kreuzjoch Winterwind 2012, Skellefteå/SE
  18. 18. Intelligent load control for heated wind measurement sensors Wind measurement mast Steinjoch Energiewerkstatt offered: 50m Mast with heated ultrasonic anemometer External power supply system; 97% data availability Winterwind 2012, Skellefteå/SE
  19. 19. Intelligent load control for heated wind measurement sensors External power supply system Power demand Ultrasonic: 250 W (periodically) Power demand LIDAR: 40 W (100 W) (continuously) Technical specification: PV generator: 4 x 180 W Wind generator: 2,40 m diameter / 900 W Fuel cell: 300 W (as backup) Hydrogen store: 6 bottles à 50 litres Battery storage: 600 Ah / c100 Data storage: Ammonit Meteo 32 Dimensions: 1.10 / 2.20 / 1.80 Operat. control: EMS Energy management system Winterwind 2012, Skellefteå/SE
  20. 20. Intelligent load control for heated wind measurement sensors Energy management system Controlling of the system •  Load management: Managing the power demand of the sensors according to the actual conditions •  Production management: Intelligent interplay of the components •  Thermal management: Intelligent provision of the required thermal conditions (for battery pack and fuel cell) •  Provision of a remote control system, which allows permanent control and a remote changing of the settings Winterwind 2012, Skellefteå/SE
  21. 21. Intelligent load control for heated wind measurement sensors Experience from first months Extreme conditions •  Mean wind speed: 12 m/s in 23 m height •  Wind gusts (10min mean): > 30 m/s •  Ice accretion: Up to 8 cm (all-round) Evaluation of 1 ½ months • Surplus of ~30% • No demand for FC (only self consumption) • Data availability of ~97% Winterwind 2012, Skellefteå/SE
  22. 22. Intelligent load control for heated wind measurement sensors Intelligent load control for heated wind measurement sensors Thanks for your attention! Winterwind 2012, Skellefteå/SE

×