Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Potência de i
Potência de i
• No século XVI , os matemáticos Cardano e Bombelli, entre outros,
realizaram alguns progressos no estudo da...
Cardano
Bombelli
• Unidade imaginária:
• define-se a unidade imaginária , representada pela letra i , como
sendo a raiz quadrada
de -1. Pod...
Os números complexos são identificados por z = a + bi, onde a é a
parte real e b a parte imaginária. A letra i acompanha a...
• Potências de i :
i0 = 1
i1 = i
i2 = -1
i3 = i2 . i = -i
i4 = (i2)2 = (-1)2 = 1
i5 = i4 . i = 1.i = i
i6 = i5 . i = i . i...
Equipe
• Alunos 3.01
• Silvana Patrícia
• Juliana Martins
• Ticiane Carvalho
• Paulo Figueiredo
• Luis Henrique
• Emerson ...
Upcoming SlideShare
Loading in …5
×

Trabalho 3.01 potência de i

640 views

Published on

Trabalho de matemática - 3.01

Potência de i

> Componentes: Ticiane Carvalho,Silvana Patrícia, Juliana Martins, Paulo Figueiredo, Luís Henrique, Emerson Paraíso.

  • Be the first to comment

  • Be the first to like this

Trabalho 3.01 potência de i

  1. 1. Potência de i
  2. 2. Potência de i • No século XVI , os matemáticos Cardano e Bombelli, entre outros, realizaram alguns progressos no estudo das raízes quadradas de números negativos. Dois séculos depois, estes estudos foram ampliados por Wesses, Argand e Gauss. Estes matemáticos são considerados os criadores da teoria dos números complexos. A teoria dos Números Complexos, tem ampla aplicação nos estudos mais avançados de Eletricidade
  3. 3. Cardano
  4. 4. Bombelli
  5. 5. • Unidade imaginária: • define-se a unidade imaginária , representada pela letra i , como sendo a raiz quadrada de -1. Pode-se escrever então: i = Ö-1 . Observe que a partir dessa definição , passam a ter sentido certas operações com números reais , a exemplo das raízes quadradas de números negativos .
  6. 6. Os números complexos são identificados por z = a + bi, onde a é a parte real e b a parte imaginária. A letra i acompanha a parte imaginária e dependo do valor de sua potência ela irá assumir um valor que irá facilitar vários cálculos. i 0 = 1, pois todo número ou letra elevando à zero é um. i 1 = i, pois todo número elevado a 1 é ele mesmo. i 2 = -1, a partir dessa potência que as outras irão derivar, veja: i 3 = i2 . i = -1 . i = - i i 4 = i2 . i2 = -1 . (-1) = 1 i 5 = i4 . i = 1 . i = i i 6 = i4 . i2 = 1 . (-1) = -1. i 7 = i4 . i3 = 1 . (-i) = - i. E assim por diante. Para descobrir, por exemplo, qual era o valor da potência i243, basta observar o seguinte: nas potências acima elas repetem-se de 4 em 4, então basta dividirmos 243 por 4, o resto será 3 então i243 será o mesmo que i3, portanto i243 = - i. Podemos concluir que in = ir, onde r é o resto da divisão.
  7. 7. • Potências de i : i0 = 1 i1 = i i2 = -1 i3 = i2 . i = -i i4 = (i2)2 = (-1)2 = 1 i5 = i4 . i = 1.i = i i6 = i5 . i = i . i = i2 = -1 i7 = i6 . i = -i , etc. • Percebe-se que os valores das potências de i se repetem no ciclo 1 , i , -1 , -i , de quatro em quatro a partir do expoente zero. Portanto, para se calcular qualquer potência inteira de i , basta elevá-lo ao resto da divisão do expoente por 4. Assim , podemos resumir: • i4n = ir onde r = 0 , 1 , 2 ou 3. (r é o resto da divisão de n por 4). • Exemplo: Calcule i2001 Ora, dividindo 2001 por 4, obtemos resto igual a 1. Logo i2001 = i1 = i .
  8. 8. Equipe • Alunos 3.01 • Silvana Patrícia • Juliana Martins • Ticiane Carvalho • Paulo Figueiredo • Luis Henrique • Emerson Paraíso

×