Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Modul 6 antenna & related equipments

1,199 views

Published on

Describe about GSM Physical hardwares. Antennas, BTS Module, etc...

Published in: Education, Business, Technology
  • Be the first to comment

Modul 6 antenna & related equipments

  1. 1. GSM-GPRS Operation Antenna And Equipment Related Module 6
  2. 2. 2 Outline  Base station antenna specification and meanings  Antenna types and trends  Antenna Type And Developments  Other Elements kris.sujatmoko@gmail.com
  3. 3. 3 BTS Logic Structure BSC Baseband subsystem Power supply subsystem RF subsystem Abis interface Um interface MS Antenna & feeder subsystem -48V/+24V kris.sujatmoko@gmail.com
  4. 4. 4 Antennas Categories Omnidirectional antennas  radiation patterns is constant in the horizontal plain  useful in flat rural areas Directional antennas  concentrate main energy into certain direction  larger communication range  useful in cities, urban areas, sectorised sites kris.sujatmoko@gmail.com
  5. 5. 5 RF Antenna and Feeder Sector¦A Sector¦A Sector¦A Antenna Feeder Jumper Jumper BTS cabinet Inner cable TX/RX MANT RXD kris.sujatmoko@gmail.com
  6. 6. 6 Antennas - Antenna Gain  Measures the antenna´s capability to transmit/extract energy to/from the propagation medium (air)  dB over isotropic antenna (dBi)  dB over dipole (dBd)  Antenna gain depends on  mechanical size: A  effective antenna aperture area: w  frequency band  Antenna Gain: G A w= 4 2 π λ Pt Gain (Dbi) Isotropic radiated Power Equivalent isotropic radiated power: EIRP = Pt+Gain(Dbi) radiated power kris.sujatmoko@gmail.com
  7. 7. 7 Technical Data B l a h b l a h b la h b l a h kris.sujatmoko@gmail.com
  8. 8. 8 Antenna Properties Electrical properties  Operation Frequency Band  Input impedance  VSWR  Polarization  Gain  Radiation Pattern  Horizontal/Vertical beamwidth  Downtilt  Front/back ratio  Sidelobe suppression and null filling  Power capability  3rd order Intermodulation  Insulation Mechanical properties  Size  Weight  Radome material  Appearance and color  Working temperature  Storage termperature  Windload  Connector types  Package Size  Lightening kris.sujatmoko@gmail.com
  9. 9. GSM-GPRS Operation Antenna Electrical properties
  10. 10. 10 Wavelength 1/2 Wavelength 1/4 Wavelength 1/4 Wavelength 1/2 Wavelength Dipole Dipoles 1800MHz 166mm 900MHz 333mm kris.sujatmoko@gmail.com
  11. 11. 11 1 dipole (received power) 1mW Multiple dipole matrix Received power 4 mW GAIN = 10log(4mW/1mW) = 6dBd kris.sujatmoko@gmail.com
  12. 12. 12 Gain = 10log(8mW/1mW) = 9dBi “Sector antenna” Received power 8mW “Omnidirectional array” Received power 1mW (Overlook Antenna kris.sujatmoko@gmail.com
  13. 13. 13  GSM 900 : 890-960MHz  GSM 1800 : 1710-1880MHz  GSM dual band : 890-960MHz & 1710-1880MHz  eg.824-960MHz 1710-1900MHz  CDMA2000 1x Frequency Range kris.sujatmoko@gmail.com
  14. 14. 14 Impedance  50Ω Cable 50 ohms Antenna 50 ohms kris.sujatmoko@gmail.com
  15. 15. 15 9.5 W 80 ohms 50 ohms Forward: 10W Backward: 0.5W Return Loss 10log(10/0.5) = 13dB VSWR (Voltage Standing Wave Ratio) VSWR kris.sujatmoko@gmail.com
  16. 16. 16  <1.5  Γ=(VSWR-1)/(VSWR+1)  RL=-20lg Γ kris.sujatmoko@gmail.com
  17. 17. 17 Polarization Vertical Horizontal + 45degree slant - 45degree slant kris.sujatmoko@gmail.com
  18. 18. 18 V/H (Vertical/Horizontal) Slant (+/- 45°) kris.sujatmoko@gmail.com
  19. 19. 19  Linear,vertical  ±45 °dual linear ±45 ° slant kris.sujatmoko@gmail.com
  20. 20. 20 Dipole Ideal radiating dot source (lossless radiator) eg: 0dBd = 2.15dBi dBd and dBi 2.15dB kris.sujatmoko@gmail.com
  21. 21. 21 Pattern kris.sujatmoko@gmail.com
  22. 22. 22 Beamwidth 120° (eg) Peak Peak - 10dB Peak - 10dB 10dB Beamwidth 60° (eg) Peak Peak - 3dB Peak - 3dB 3dB Beamwidth kris.sujatmoko@gmail.com
  23. 23. 23 3dB Beamwidth Horizontal  Directional Antenna 65°/90°/105°/120 °Omni 360° kris.sujatmoko@gmail.com
  24. 24. 24 Directional Omni-directional 3dB Beamwidth Vertical kris.sujatmoko@gmail.com
  25. 25. 25  Mechanical down tilt  Fixed electronic down tilt  Adjustable electronic down tilt Downtilt kris.sujatmoko@gmail.com
  26. 26. 26 Demonstration of Electronic Downtilt kris.sujatmoko@gmail.com
  27. 27. 27 Non down tilt Electronic downtilt Mechanical downtilt kris.sujatmoko@gmail.com
  28. 28. 28 Electronic and mechanical downtilt kris.sujatmoko@gmail.com
  29. 29. 29 Antenna Downtilit – Whats goal ? kris.sujatmoko@gmail.com
  30. 30. 30 Antenna Downtilt Consideration kris.sujatmoko@gmail.com
  31. 31. 31  Ratio of maximum mainlobe to maximum sidelobe F/B = 10 log(FP/BP) typically 25dB Back power Front power Front to back ratio kris.sujatmoko@gmail.com
  32. 32. 32 Upper Side lobes Suppression & Null Fill kris.sujatmoko@gmail.com
  33. 33. 33 Sidelobes (dB) (dB) kris.sujatmoko@gmail.com
  34. 34. 34kris.sujatmoko@gmail.com
  35. 35. 35  Continuous :25-1500 watts  peak :n2 ×p Permitted Power kris.sujatmoko@gmail.com
  36. 36. 36  IMD@2×43dBm  f1, f2, 2f1-f2, 2f2-f1 913MHz,936MHz,959MHz,982MHz Third Order Intermodulation kris.sujatmoko@gmail.com
  37. 37. 37 Intermodulation  Intermodulasi  Terjadi akibat penguatan sistem yang non linier  Hanya orde ke-3 dan kadang-kadang orde ke-5 yang signifikan  Sinyal dengan amplituda yang sama menghasilkan level IM yang sama pada frek tinggi dan rendah  Sinyal dengan amplituda berbeda memberikan level IM yang berbeda pula  Untuk mencegah intermodulasi,penguat dioperasikan pada penguatan bukan- maksimum kris.sujatmoko@gmail.com
  38. 38. 38 Intermodulation  Intermodulasi  Komp. Orde 1 : diharapkan linier  Komp. Orde 2 : frek 2ω  diredam oleh filter  Komp. Orde 3 : frek 3ω  diredam dengan filter Penguat Non-linier ( ) ( )tB tAv B Ai ω ω cos cos + = ++ += 3 2 i iio cv bvavv  Yang bermasalah :  Komponen yang lain  amplituda kecil ( ) ( )ABBA ωωωω −− 2,2 kris.sujatmoko@gmail.com
  39. 39. 39 1000mW ( 1W) 1mW 10log(1000mW/1mW) = 30dB Isolation kris.sujatmoko@gmail.com
  40. 40. 40 10 Simple Guidelines for RF Safety  All personnel should have EME awareness training  All personnel entering the site must be authorized  Obey all posted signs  Assume all antennas are active  Before working on antennas, notify owners and disable appropriate transmitters  Maintain minimum 3 feet clearance from all antennas  Do not step in front of antennas  Use personal RF monitors while working near antennas  Never operate transmitters without shields during normal operation  Do not operate base station antennas inside equipment rooms kris.sujatmoko@gmail.com
  41. 41. 41  PVC, Fiberglass  Anti-temperature, water-proof, anti-aging, weather resistant Radome Material kris.sujatmoko@gmail.com
  42. 42. 42  Good-looking, environment- protecting Colour kris.sujatmoko@gmail.com
  43. 43. 43kris.sujatmoko@gmail.com
  44. 44. GSM-GPRS Operation Antenna Types and Development
  45. 45. 45 Antenna Types By frequency band: GSM900, GSM1800, GSM900/1800 By polarization: Vertical, Horizontal, ±45º linear polarization, circle polarization By pattern: Omni-directional, directional By down-tilt: Non, mechanical, electronic adjustment, remote control By function: Transmission, receiving, transceiving kris.sujatmoko@gmail.com
  46. 46. 46 Broad band Multifunctional High Integrity Antenna Development Trend kris.sujatmoko@gmail.com
  47. 47. 47  def = Attenuation between TX & RX antenna connectors  Horizontal separation  needs approx. 5λ distance for sufficient decoupling  antenna patterns superimposed if distance too close  Vertical separation  distance of 1 λ provides good decoupling values  good for RX /TX decoupling  Minimum coupling loss main lobe 5 .. 10 λ 1λ Antennas Decoupling kris.sujatmoko@gmail.com
  48. 48. 48 Installation Examples  Recommended decoupling  TX - TX: ~20dB  TX - RX: ~40dB  Horizontal decoupling distance depends on  antenna gain  horizontal rad. pattern  Omnidirectional antennas  RX + TX with vertical separation (“Bajonett”)  RX, RX div. , TX with vertical separation (“fork”) Vertical decoupling is much more effective 0,2m kris.sujatmoko@gmail.com
  49. 49. 49 •Time diversity •Frequency diversity •Space diversity •Polarisation diversity •Multipath diversity •interleaving •frequency hopping •multiple antennas •crosspolar antennas •equaliser •rake receiver t f Diversity Diversity Technics kris.sujatmoko@gmail.com
  50. 50. 50 Diversity gain depends on environment Is there coverage improvement by diversity ?  antenna diversity  equivalent to 5dB more signal strength  more path loss acceptable in link budget  higher coverage range R R(div) ~ 1,3 R A 1,7 A ?? 70% more coverage per cell ?? needs less cells in total ?? True only (in theory) if the environment is infinitely large and flat Diversity Coverage Improvement? kris.sujatmoko@gmail.com
  51. 51. 51 Network Elements MHA MastHead Amplifier (Low Noise Amplifier)  RX signal amplified near the antenna in the top of the mast  Offers better coverage  Eliminates the antenna cable loss  Increased receiver sensitivity of the BTS and cell size  Increased network quality Noise Figure £ 2.0 dB (typical) RX Gain: Up to 12 dB Dimensions : 266 x 130 x 123 mm Weight : 5.6 kg (duplexed) Volume : 4.2 l IP 65 Enclosure Protection Power Feeding Through Antenna Coax Alarms handled in BTS kris.sujatmoko@gmail.com
  52. 52. 52 Booster • TX signal amplified • Nokia Booster Configuration • Booster (PA) Unit (TBU) • Booster Filtering Unit (AFH) • Masthead Preamplifier equipment (MHA) • Output power before combining can be up to 49 dBm  Isolator + combiner + filter (AFH) give roughly 2.5 dB losses  Booster BTS is suitable for all the environments where enhanced coverage or high output power is needed  Theoretically, cell radius is enhanced up to 60% and the coverage area is roughly the triple Network Elements Booster TRXTBUAFH kris.sujatmoko@gmail.com
  53. 53. 53 BTS Equipments layout TOWER BTSE RECTIFIER BATTERY TRANSMISSION EQP. SITE GENSET A C Grounding sensor ACPDB Power PLN SHELTER kris.sujatmoko@gmail.com
  54. 54. GSM-GPRS Operation End of Section 6 Antenna And Equipment Related

×