Transmisores instrumentacion industrial

26,799 views

Published on

  • Be the first to comment

Transmisores instrumentacion industrial

  1. 1. ECCI: ESCUELA COLOMBIANA DE CARRERAS INDUSTRIALESGuía No. 1 Fecha:Estudiante: ________________ Código:_________________Objetivo general: Conocer la terminología unificada empleada por losfabricantes, usuarios y organismos que intervienen directa o indirectamenteen el campo de la instrumentación industrial y que todos empleen el mismolenguajeObjetivos específicos:1. Conocer y definir los diferentes conceptos utilizados en instrumentación y control.2. Comprender, asociar y comparar, los diferentes conceptos, para determinar sus diferencias.3. Aplicar y experimentar los conceptos en a la implementación de un instrumento de medida.4. Experimentar los procesos de caracterización y calibración de un instrumento de medidaMARCO TEORICO:Definiciones en controlLos instrumentos de control empleados en las industrial de proceso talescomo química, petroquímica, alimenticia, metalúrgica, energética, textil,papel, etc., tienen su propia terminología, los términos empleados definen lascaracterísticas propias de medida y de control y las estáticas y dinámicas delos diversos instrumentos utilizados.La terminología empleada se ha unificado con el fin de que los fabricantes,los usuarios y los organismos o entidades que intervienen directa oindirectamente en el campo de la instrumentación empleen el mismolenguaje. Las definiciones de los términos empleados se relacionan con lassugerencias hechas por la SAMA (Scientific Apparatus Makers Association)en su norma PMC 20-2-1970, Recomendación ANSI/ISA S 51.1 de 1979,Revisión 1993, Aprobación 1995.Conceptos abordados por la normaCampo de medida 1  
  2. 2. AlcanceErrorIncertidumbre de la medidaExactitudPrecisiónZona muertaSensibilidadRepetibilidadHistéresisCampo de medida con elevación de ceroCampo de medida con supresión de ceroElevación de ceroSupresión de ceroDerivaFiabilidadResoluciónTrazabilidadRuidoLinealidadEstabilidadTemperatura de servicioVida útil de servicioReproductibilidadRespuesta frecuencial1.2 Definiciones en controlLos instrumentos de control empleados en las industrias de proceso tales como química, petroquímica,alimenticia, metalúrgica, energética, textil, papel, etc., tienen su propia terminología; los términos empleadosdefinen las características propias de medida y de control y las estáticas y dinámicas de los diversosinstrumentos utilizados:- Indicadores, registradores, controladores, transmisores y válvulas de control.La terminología empleada se ha unificado con el fin de que los fabricantes, los usuarios y los organismos oentidades que intervienen directa o indirectamente en el campo de la instrumentación industrial empleen elmismo lenguaje. Las definiciones de los términos empleados se relacionan con las sugerencias hechas porANSI/ISA-S51.1-1979 (R 1993) aprobadas el 26 de mayo de 1995. Se representan en la figura 1.3 y son lassiguientes (figuran entre paréntesis los términos ingleses equivalentes).1.2.1 Intervalo de medida (range)Espectro o conjunto de valores de la variable medida que están comprendidos dentro de los límites superior einferior de la capacidad de medida, de recepción o de transmisión del instrumento. Viene expresadoestableciendo los dos valores extremos. Ejemplo: Un manómetro de intervalo de medida 0-10 bar, un transmisorde presión electrónico de 0-25 bar con señal de salida 4-20 mA c.c. o un instrumento de temperatura de 100-300 °C.Otro término derivado es el de dinámica de medida o rangeabilidad (rangeability), que es el cociente entre elvalor de medida superior e inferior de un instrumento. Por ejemplo, una válvula de control lineal que regulelinealmente el caudal desde el 2 % hasta el 100 % de su carrera tendrá una rangeabilidad de 100/2 = 50.    
  3. 3. 1.2.2 Alcance (span)Es la diferencia algebraica entre los valores superior e inferior del campo de medida del instrumento. En losejemplos anteriores es de 10 bar para el manómetro, de 25 bar para el transmisor de presión y de 200°C para elinstrumento de temperatura.1 .2.3 ErrorEl error de la medida es la desviación que presentan las medidas prácticas de una variable de proceso conrelación a las medidas teóricas o ideales, como resultado de las imperfecciones de los aparatos y de lasvariables parásitas que afectan al proceso. Es decir:Error = Valor leído en el instrumento - Valor ideal de la variable medidaEl error absoluto es: Error absoluto = Valor leído - Valor verdaderoEl error relativo representa la calidad de la medida y es: Error relativo = Error absoluto Valor verdaderoSi el proceso está en condiciones de régimen permanente existe el llamado error estático. En condicionesdinámicas el error varía considerablemente debido a que los instrumentos tienen características comunes a lossistemas físicos: absorben energía del proceso y esta transferencia requiere cierto tiempo para ser transmitida,lo cual da lugar a retardos en la lectura del aparato. Siempre que las condiciones sean dinámicas, existirá enmayor o menor grado el llamado error dinámico (diferencia entre el valor instantáneo y el indicado por elinstrumento): su valor depende del tipo de fluido del proceso, de su velocidad, del elemento primario (termopar,bulbo y capilar), de los medios de protección (vaina), etc. El error medio del instrumento es la media aritméticade los errores en cada punto de la medida determinados para todos los valores crecientes y decrecientes de lavariable medida.Cuando una medición se realiza con la participación de varios instrumentos, colocados unos a continuación deotros, el valor final de la medición estará constituido por los errores inherentes a cada uno de los instrumentos.Si el límite del error relativo de cada instrumento es ± a, ± b, ± c, ± d, etc., el máximo error posible en lamedición será la suma de los valores anteriores, es decir: ± (a + b + C + d + ...)Ahora bien, como es improbable que todos los instrumentos tengan al mismo tiempo su error máximo en todaslas circunstancias de la medida, suele tomarse como error total de una medición la raíz cuadrada de la sumaalgebraica de los cuadrados de los errores máximos de los instrumentos, es decir, la expresión: ± a 2 + b 2 + c 2 + d 2 + ...    
  4. 4. Por ejemplo, el error obtenido al medir un caudal con un diafragma, un transmisor electrónico de 4-20 mA c.c.,un receptor y un integrador electrónicos es de:Elementos del lazo ErroresDiafragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 %Transmisor electrónico de 4-20 mA c.c. …………………………………………………0,5 %Receptor electrónico .. . . . . . . . . . . . . . . . . . . . . . . . . . … . . . . . . . . . . . . .. 0,5 %Integrador electrónico ……………………………………………………………..…………0,5 %Error total de la medición = ± 2 2 + 0.5 2 + 0.5 2 + 0.5 2 2,18 %1.2.4 Incertidumbre de la medida (uncertainty)Cuando se realiza una operación de calibración, se compara el instrumento a calibrar con un aparato patrónpara averiguar si el error (diferencia entre el valor leído por el instrumento y el verdadero valor medido con elaparato patrón) se encuentra dentro de los límites dados por el fabricante del instrumento. Como el aparatopatrón no permite medir exactamente el valor verdadero (también tiene un error) y como además en laoperación de comparación intervienen diversas fuentes de error, no es posible caracterizar la medida por unúnico valor, lo que da lugar a la llamada incertidumbre de la medida o incertidumbre (uncertainty).Entre las fuentes de incertidumbre se encuentran:- Influencia de las condiciones ambientales.- Lecturas diferentes de instrumentos analógicos realizadas por los operadores.- Variaciones en las observaciones repetidas de la medida en condiciones aparentemente idénticas.- Valores inexactos de los instrumentos patrón.- Muestra del producto no representativa. Por ejemplo, en la medida de temperatura con un termómetro patrónde vidrio, la masa del bulbo cambia la temperatura de la muestra del proceso cuya temperatura desea medirse.Así pues, la incertidumbre es la dispersión de los valores que pueden ser atribuidos razonablemente alverdadero valor de la magnitud medida. En el cálculo de la incertidumbre intervienen la distribución estadísticade los resultados de series de mediciones, las características de los equipos (deriva en función de la tensión dealimentación, o en función de la temperatura...), etc.Para que la comparación sea correcta, el procedimiento general es que la medida del patrón de medida seamás preciso que el aparato que se calibra (traceado de presión ISA S 37.3).Para el cálculo de la incertidumbre se sigue el documento n° 19 de la W.E.C.C. donde las variables seconsideran aleatorias, así como las variables que afectan de forma sistemática al valor que se mide.    
  5. 5. Hay dos métodos A y B de evaluación de la incertidumbre.Método A. La evaluación de la incertidumbre estándar se efectúa por análisis estadístico de la serie deobservaciones repetidas, considerando que la distribución de probabilidades de las medias de dichas variableses la curva de Gauss o de distribución normal en forma de campana. De este modo, la media aritmética es elvalor estimado de la variable, mientras que la desviación estándar representa el grado de dispersión de losvalores de la variable que se miden repetitivamente. .Así, en una serie de medidas repetitivas de la variable, el valor estimado x viene dado por la media aritmética opromedio de los valores observados:Cuando el número de medidas repetitivas es menor de 10, la desviación típica debe multiplicarse por un factormultiplicador: El nivel de confianza de la incertidumbre viene dado multiplicando la incertidumbre por un factor K. El nivel deconfianza recomendado por la W.E.C.C. es del 95 % Y se obtiene multiplicando la incertidumbre por el valor K =2.Método B. La incertidumbre se determina en base a la información disponible procedente de varias fuentes,tales como:- Datos de medidas anteriores.- Experiencia y conocimiento de los instrumentos.- Especificaciones del fabricante.- Valores de incertidumbre de manuales técnicos.El método es perfectamente fiable y suple al método A en los casos en que el número de observaciones seapequeño.Si se conocen los valores máximos (al) y mínimos (a2) de la variable X, para K = 1 (100 % confianza), su valorestimado es:Cuando se dispone de una sola medida se toma su valor como valor estimado de la variable, y como valor de laincertidumbre, la incertidumbre típica asociada.1.2.5 Exactitud (accuracy)La exactitud (accuracy) es la cualidad de un instrumento de medida por la que tiende a dar lecturas próximas alverdadero valor de la magnitud medida.En otras palabras, es el grado de conformidad de un valor indicado a un valor estándar aceptado o valor ideal,considerando este valor ideal como si fuera el verdadero. El grado de conformidad independiente es ladesviación máxima entre la curva de calibración de un instrumento y una curva característica especificada,posicionada de tal modo tal que se reduce al mínimo dicha desviación máxima.    
  6. 6. La exactitud (accuracy) define los límites de los errores cometidos cuando el instrumento se emplea encondiciones normales de servicio durante un período de tiempo determinado (normalmente 1 año). La exactitudse da en términos de inexactitud, es decir, un instrumento de temperatura de 0-100°C con temperatura delproceso de 100°C y que marca 99,98 °C se aproxima al valor real en 0,02 °C, o sea tiene una inexactitud de0,02 °C. Hay varias formas para expresar la exactitud:a) Tanto por ciento del alcance, campo de medida o range. Ejemplo: en el instrumento de temperatura de lafigura 1.3, para una lectura de 150°C y una exactitud de ±0,5 %, el valor real de la temperatura estarácomprendido entre 150 ± 0,5 x 200/100 = 150 ±1, es decir, entre 149 y 151°C.b) Directamente, en unidades de la variable medida. Ejemplo: exactitud ±1 °C;c) Tanto por ciento de la lectura efectuada. Ejemplo: exactitud de ±1 % de 150°C, es decir, ±1,5 °C;d) Tanto por ciento del valor máximo del campo de medida. Ejemplo: exactitud de ±0,5 % de 300°C = ±1,5 °C;e) Tanto por ciento de la longitud de la escala. Ejemplo: si la longitud de la escala del instrumento de la figura1.3 es de 150 mm, la exactitud de ±0,5 % representará ±0,75 mm en la escala.La exactitud varía en cada punto del campo de medida, si bien el fabricante la especifica, en todo el margen delinstrumento, indicando a veces su valor en algunas zonas de la escala. Por ejemplo: un manómetro puede teneruna exactitud de ±1 % en toda la escala y de ±0,5 % en la zona central. Cuando se desea obtener la máximaexactitud del Instrumento en un punto determinado de la escala, puede calibrarse únicamente para este puntode trabajo, sin considerar los valores restantes del campo de medida. Por ejemplo: un termómetro de 0-150°C yde ±1 % de exactitud situado en un baño de temperatura constante a 80°C, puede ser calibrado a este valor, demodo que su exactitud en este punto de trabajo será la máxima que se pueda obtener con un termómetropatrón. Es obvio que para los valores restantes, en particular los correspondientes a los extremos de la escala,la exactitud se apartará de ±1 %.Hay que señalar que los valores de la exactitud de un instrumento se consideran en general establecidos parael usuario, es decir, son los proporcionados por los fabricantes de los instrumentos. Sin embargo, estos últimossuelen considerar también los valores de calibración en fábrica y de inspección. Por ejemplo, un instrumentoque en fábrica tiene una exactitud de calibración de + 0,8 %, en inspección le corresponde + 0,9 % Y la dada alusuario es ±1 %.Con ello se pretende tener un margen de seguridad para compensar los efectos de las diferencias deapreciación de las personas que efectúan la calibración, las diferentes precisiones de los instrumentos demedida utilizados, las posibles alteraciones debidas al desplazamiento del instrumento de un punto a otro, losefectos ambientales y de envejecimiento, etc.1.2.6 PrecisiónLa precisión es la cualidad de un instrumento por la que tiende a dar lecturas muy próximas unas a otras, esdecir, es el grado de dispersión de las mismas. Un instrumento puede tener una pobre exactitud, pero una granprecisión. Por ejemplo, un manómetro de intervalo de medida de 0 a 10 bar, puede tener un error de ceroconsiderable marcando 2 bar sin presión en el proceso y diversas lecturas de 7,049, 7,05, 7,051, 7,052efectuadas a lo largo del tiempo y en las mismas condiciones de servicio, para una presión del proceso de 5bar. Tendrá un error práctico de 2 bar, pero los valores leídos estarán muy próximos entre sí con una muypequeña dispersión máxima de 7,052 - 7,049 = 0,003, es decir, el instrumento tendrá una gran precisión.    
  7. 7. Por lo tanto, los instrumentos de medida estarán diseñados por los fabricantes para que sean precisos, y comoperiódicamente se descalibran, deben reajustarse para que sean exactos. A señalar que el término precisión essinónimo de repetibilidad.1.2.7 Zona muerta (dead zone o dead band)La zona muerta (dead zone o dead band) es el campo de valores de la variable que no hace variar la indicacióno la señal de salida del instrumento, es decir, que no produce su respuesta. Viene dada en tanto por ciento delalcance de la medida. Por ejemplo: en el instrumento de la figura 1.3 es de ±0,1 %, es decir: 0,1 x 200/100 =±0,2º C.1.2.8 Sensibilidad (sensitivity)La sensibilidad (sensitivity) es la razón entre el incremento de la señal de salida o de la lectura y el incrementode la variable que lo ocasiona, después de haberse alcanzado el estado de reposo. Por ejemplo, si en untransmisor electrónico de 0-10 bar, la presión pasa de 5 a 5,5 bar y la señal de salida de 11,9 a 12,3 mA c.c., lasensibilidad es el cociente: (12,3 − 11,9) /(20 − 4) = ±0,5 mA c.c. / bar (5,5 − 5) / 10Viene dada en tanto por ciento del alcance de la medida: Si la sensibilidad del instrumento de temperatura de lafigura 1.3 es de + 0,05 %, su valor será de 0,05 x 200/100 = ±0,1 °C/°C.Hay que señalar que no debe confundirse la sensibilidad con el término de zona muerta; son definicionesbásicamente distintas que antes era fácil confundir cuando la definición inicial de la sensibilidad era "valormínimo en que se ha de modificar la variable para apreciar un cambio medible en el índice o en la pluma deregistro de los instrumentos.1.2.9 Repetibilidad (repeatibility)La repetibilidad (repeatibility) es la capacidad de reproducción de las posiciones de la pluma o del índice o de laseñal de salida del instrumento, al medir repetidamente valores idénticos de la variable en las mismascondiciones de servicio y en el mismo sentido de variación, recorriendo todo el campo. La repetibilidad essinónimo de precisión. A mayor repetibilidad menor dispersión de los valores de salida para un valor de la señalde entrada del proceso y, por lo tanto, mayor precisión.Se considera en general su valor máximo (repetibilidad máxima) y se expresa en tanto por ciento del alcance;un valor representativo es el de ±0,1%. Nótese que el término repetibilidad no incluye la histéresis (figura 1.3 b).Para determinada, el fabricante comprueba la diferencia entre el valor verdadero de la variable y la indicación oseñal de salida del instrumento recorriendo todo el campo, y partiendo, para cada determinación, desde el valormínimo del campo de medida. De este modo, en el caso de un manómetro puede haber anotado los siguientesdatos relacionados.La repetibilidad viene dada por la fórmula ∑ ( x − x) i 2 resultando: 0,00785 = ± 0,02% N 19    
  8. 8. 1.2.10 Histéresis (hysteresis)La histéresis (hysteresis) es la diferencia máxima que se observa en los valores indicados por el índice o lapluma del instrumento o la señal de salida para el mismo valor cualquiera del campo de medida, cuando lavariable recorre toda la escala en los dos sentidos, ascendente y descendente.Se expresa en tanto por ciento del alcance de la medida. Por ejemplo: si en un termómetro de 0-100 %, para elvalor de la variable de 40 °C, la aguja marca 39,9 al subir la temperatura desde 0, e indica 40,1 al bajar latemperatura desde 100°C, el valor de la histéresis es de:401-399 . 100 = ± 0,2%100-0En la figura 1.3 c pueden verse las curvas de histéresis que están dibujadas exageradamente para apreciarbien su forma. Hay que señalar que el término zona muerta está incluido dentro de la histéresis.    
  9. 9. 1.2.11 Otros términosEmpleados en las especificaciones de los instrumentos son los siguientes:- Campo de medida con elevación de ceroEs aquel campo de medida en el que el valor cero de la variable o señal medida es mayor que el valor inferiordel campo. Por ejemplo, -10 °C a 30 °C.- Campo de medida con supresión de ceroEs aquel campo de medida en el que el valor cero de la variable o señal medida es menor que el valor inferiordel campo. Por ejemplo, 20 °C a 60 °C.- Elevación de ceroEs la cantidad con que el valor cero de la variable supera el valor inferior del campo. Puede expresarse enunidades de la variable medida o en % del alcance. Por ejemplo, 10 °C en el campo -10 °C a 30 °C delinstrumento, o sea: (10/40) x 100 = 25 %.- Supresión de ceroEs la cantidad con que el valor inferior del campo supera el valor cero de la variable. Puede expresarse enunidades de la variable medida o en % del alcance. Por ejemplo, 20 °C en el campo 20 °C a 60 °C delinstrumento, o sea (20/40) x 100 = 50 %.DerivaEs una variación en la señal de salida que se presenta en un período de tiempo determinado mientras semantienen constantes la variable medida y todas las condiciones ambientales. Se suelen considerar la derivade cero (variación en la señal de salida para el valor cero de la medida atribuible a cualquier causa interna) y laderiva térmica de cero (variación en. la señal de salida a medida cero, debida a los efectos únicos de latemperatura). La deriva está expresada usualmente en porcentaje de la señal de salida de la escala total a latemperatura ambiente, por unidad, o por intervalo de variación de la temperatura. Por ejemplo, la deriva térmicade cero de un instrumento en condiciones de temperatura ambiente durante 1 mes fue de 0,2 % del alcance.Fiabilidad (Reliability)Medida de la probabilidad de que un instrumento continúe comportándose dentro de límites especificados deerror a lo largo de un tiempo determinado y bajo condiciones especificadas.ResoluciónMagnitud de los cambios en escalón de la señal de salida (expresados en tanto por ciento de la salida de todala escala) al ir variando continuamente la medida en todo el campo. Es también el grado con que el instrumentopuede discriminar valores equivalentes de una cantidad, o la menor diferencia de valor que el aparato puededistinguir.Resolución infinitaCapacidad de proporcionar una señal de salida progresiva y continua en todo el campo de trabajo delinstrumento.    
  10. 10. Trazabilidad (Traceability)Propiedad del resultado de las mediciones efectuadas con un instrumento o con un patrón, tal que puederelacionarse con patrones nacionales o internacionales, mediante una cadena ininterrumpida decomparaciones, con todas las incertidumbres determinadas.RuidoCualquier perturbación eléctrica o señal accidental no deseadas que modifica la transmisión, indicación oregistro de los datos deseados. Un caso especial es la interferencia de radiotransmisores RFI (Radio FrequencyInterferente). Puede expresarse en unidades de la señal de salida o en tanto por ciento del alcance.LinealidadLa aproximación de una curva de calibración a una línea recta especificada.Linealidad basada en puntosFalta de linealidad expresada en forma de desviación máxima con relación a una línea recta que pasa a travésde los puntos dados correspondientes al cero y al 100 % de la variable medida. Temperatura de servicioCampo de temperaturas en el cual se espera que trabaje el instrumento dentro de límites de errorespecificados.Vida útil de servicioTiempo mínimo especificado durante el cual se aplican las características de servicio continuo e intermitente delinstrumento sin que se presenten cambios en su comportamiento más allá de tolerancias especificadas.Reproductibilidad (Reproducibility)Capacidad de reproducción de un instrumento de las medidas repetitivas de la lectura o señal de salida para elmismo valor de la variable medida alcanzado en ambos sentidos, en las mismas condiciones de servicio y a 10largo de un período de tiempo determinado. Por ejemplo, un valor representativo sería ±0,2 % del alcance de lalectura o señal de salida a lo largo de un período de 30 días.Respuesta frecuencialVariación con la frecuencia de la relación de amplitudes señal de salida/variable medida (y de la diferencia defases entre la salida y la variable medida) para una medida de variación senoidal aplicada a un instrumentodentro de un campo establecido de frecuencias de la variable medida. Se especifica usualmente como "dentrode ±. ... % de ... a ... Hz".     
  11. 11.   
  12. 12.   
  13. 13.   
  14. 14.   
  15. 15.   
  16. 16.   
  17. 17.   
  18. 18.   
  19. 19. ACTIVIDAD:Actividad No. 1: QuizConsultar la norma ANSI/ISA S 51.1 de 1979, Revisión 1993, Aprobación 1995, de acuerdo a la norma definircada uno de los conceptos de la lista del marco teórico.Actividad No. 2: Proyecto de laboratorioAplicación de los conceptos básicos mediante el diseño e implementación de un instrumento de medida decorriente continua V.O.M. (Voltímetro – Ohmetro – Miliamperímetro). Para lo cual se cuenta con cinco guías delaboratorio que se pueden descargar del aula virtual: 1. Caracterización de un instrumento de medida de corriente continua 2. Implementación de Voltímetro 3. Implementación de Miliamperímetro 4. Implementación de un Ohmetro 5. Implementación del V.O.M.El instrumento de medida V.O.M. debe ir implementado en protoboard, presentado en grupos de tres personasy se calificará una semana después del primer parcial, con las cinco guías completasActividad No. 3: CALIBRACIÓN DE UN INSTRUMENTO DE MEDIDA DE C.C.REGRESIONES CON EXCELOBJETIVOS• Interpretar el funcionamiento del instrumento por medio de los fenómenos que lo rigen.    
  20. 20. • Proponer el modelo experimental mediante la calibración y procesamiento de los datos obtenidos en el laboratorio• Establecer la relación entrada por medio de la experimentación• Determinar una ecuación que describa el modelo en forma de salida sobre la entrada• Desarrollar habilidades con programas para la interpretación de regresiones de experimentación y calibración de instrumentos.• Proponer el modelo experimental mediante la calibración y procesamiento de los datos obtenidos en el laboratorio, haciendo uso de programas de cálculo.COMPETENCIAS• Analizar del comportamiento de señales bajo condiciones de laboratorio• Interpretar de los resultados obtenidos de experimentación con señales aplicadas a instrumentos• Argumentar por medio de modelos numéricos el comportamiento de las señales obtenidas del instrumento o sensorDESTREZAS• Habilidad del manejo del calculo numérico para explicar los resultados experimentales• Capacidad de implementar un experimento y toma de datos• Habilidad del manejo de señales por medio de software para la comprobación de resultadosMARCO TEORICO La calibración de un instrumento es uno de los parámetros que permiten conocer el comportamiento de uninstrumento en cuanto a su linealidad.Es importante el desarrollo de un experimento en el cual se deben tener varios parámetros en cuenta como son: • Temperatura del lugar donde se calibra • Humedad • Presión Atmosférica • VibraciónTambién es necesario contar con un patrón adecuado para poder comparar la variable a medir y planear eldesarrollo de la experimentación.El tratamiento de los datos por medio de la estadística es parte del desarrollo para la obtención de la ecuaciónque rige el instrumento, para esto se hace uso de las regresiones que están clasificadas de acuerdo alcomportamiento de las ecuaciones como ejemplo tenemos, lineales, exponenciales, logarítmicas etc,información que se puede ampliar en libros de estadística para ingenieros.FUNCIONAMIENTOLa calibración es importante en la industria en diferentes áreas como la medición en fuerza, pesos, humedad,caudal, presión temperatura etc.En primer lugar se debe planear un experimento en donde se tengan los elementos necesarios y conocer quegrafica se debe obtener para conocer el comportamiento del instrumento.Realizar la toma de datos en forma ascendente y descendente para obtener un patrón claro en la grafica.    
  21. 21. Graficar los resultados para identificar que tipo de regresión se debe aplicar a los datos obtenidos y asídeterminar la ecuación que modela el instrumento.Regresiones con ExcelLas regresiones son la herramienta numérica que permite el cálculo del modelo matemático de un experimentopor medio de los datos obtenidos en el laboratorio.Permite conocer cual es la ecuación matemática que reproduce el experimento y muestra la calidad con la quese midió y permite detectar los errores que se cometieron durante el proceso de medición.Se tienen diferentes modelos de regresión los cuales se deben ajustar al tipo de datos, estos son: Regresión Lineal Regresión Logarítmica Regresión de Potencias Regresión Polinómica Regresión ExponencialY otros modelos de regresión que tienen por objeto modelar procesos estadísticos.Esta formulación numérica se encuentra en Estadísticas aplicadas para ingeniería y textos de Diseño deExperimentos; también es posible conseguir información en los programas de computador que permiten hacermas sencillo el proceso de calculo; podemos citar EXCEL, MATLAB, MATHCAD, DERIVE, y MAPLE.FUNCIONAMIENTOEn todas las ingeniarías es necesario poder establecer el patrón de comportamiento de fenómenos o procesoslos cuales se deben plasmar por medio de una gráfica o ecuación que represente el comportamiento.Este procedimiento se realiza básicamente en casos en donde se desconoce el comportamiento exacto de unfenómeno y se busca que la ecuación plasme el modelo que se esta investigando. A este procedimiento se ladenomina ecuación empírica, es bueno aclarar que un fenómeno se puede modelar por diferentes ecuacionesempíricas las cuales no todos los datos se ajustan, esto hace que se determinan diferentes ecuaciones conalcance limitado.Existen diferentes formas y comportamientos de las ecuaciones, las cuales se presentan a continuación.MATERIALES Computador Programa de Excel Guía de LaboratorioPROCEDIMIENTOGRAFICAS Y REGRESIÓNPara el desarrollo de problemas aplicados se hace uso de regresiones por medio del EXCEL.    
  22. 22. Se inicia con una tabla de datos experimentales, como se muestra y se hace uso del asistente de gráficos, seselecciona las columnas que tienen las variables x e y se activa como en la figura anterior.Aparece el menú del asistente, se puede observar las diferentes opciones de graficas, en nuestro caso es deLíneas, esta opción permite escoger variadas formas de graficas.Se puede apreciar las opciones de Líneas y la ventaja de que esta tiene una vista previa, facilitando laverificación de la grafica.    
  23. 23. Se tiene este menú en donde se pueden modificar los datos en la casilla de rango y en la etiqueta de serie sepuede adicionar otra columna de tanto para x como para y, mostrando dos experimentos o dos situaciones quedependen de la misma variable. Con el botón de siguiente se avanza.En esta parte del asistente le permite colocar los títulos de la grafica y de los ejes, también es posible elmanejo, de los ejes en cuanto al formato de las líneas de división en x e y, además es posible el manejo del tipode letra, tamaño, etc (Explorar cada una de las opciones).Por último se tiene la opción de generar el gráfico en una hoja aparte o sobre la hoja en la cual aparecen losdatos, es preferible en la misma hoja de los datos para facilitar ajustes. (Objeto).La apariencia final es la siguiente.    
  24. 24. El otro aspecto a manejar es la operación de regresión, esta se desarrolla de la siguiente manera. Primero seinicia con hacer clic con el botón derecho del mouse sobre la línea y se activa el siguiente menú:Se activa en agregar línea de tendencia para así escoger la regresión que más se ajuste a la calibración.De acuerdo con la gráfica obtenida se puede escoger la mejor regresión, en algunas ocasiones no se activantodas esto se debe a los datos de la calibración que no se ajustan sino a algunas regresiones en particular, estofacilita la selección de la mejor regresión para estos datos.En la etiqueta de opciones se puede activar que muestre la ecuación y la R cuadrado. Quedando el gráfico finalde la siguiente forma.Se pueden realizar modificaciones en los ejes x e y, para mejorar la escala o cambiar el formato de ladivisiones, números, tamaño entre otras, se hace clic botón derecho con la fecha sobre el eje que se deseemodificar y se tiene el siguiente menú.    
  25. 25. Se puede realizar modificaciones en la escala tanto de x e y de tipo logarítmico con solo activar el menú escalalogarítmica.Lo anterior permite generar el papel semilog o log-log que se usa para regresiones de este tipo.Se tiene otras ayudas del programa por medio del ayudante de excel.CALCULO ESTADISITICOExcel como herramienta de cálculo tiene varias opciones que facilitan el desarrollo del análisis estadístico ypoder así generar informes de calibración de un instrumento, modelos de experimentación y otros análisis deuso frecuente en ingeniería.Haremos uso del asistente de funciones matemáticas el cual tiene se puede identificar y se obtiene elsiguiente menú.En categoría podemos seleccionar el tipo de función que deseamos usar en nuestro caso usamos estadísticasy en nombre de función podemos escoger la operación numérica que necesitamos, para esto debemos estar enuna casilla vacía y así activar el menú de funciones y poder realizar la operación.Dentro de las operaciones que se pueden desarrollar son: • Desviación estándar, la cual corresponde a la función DESVEST    
  26. 26. • Promedio: función PROMEDIO • Distribución normal o Gausiana: DISTRI.NORM • Distribución chi cuadrado: DISTRI.CHIPor medio de la ayuda de Excel se puede verificar el modelo matemático que se va aplicar y su ecuación.También muestra un ejemplo.BIBLIOGRAFÍA:NORMATIVIDADANSI/ISA – S5.1-84 (R 1992) INTRUMENTATION SYMBOLS AND IDENTIFICATIONISA – S5.2 -76ANSI/ISA –S5.2-1976 (R1992) BINARY LOGIC DIAGRAMS FOR PROCESS OPERATIONISA –S5.3-1983 GRAPHIC SYMBOLS FOR DISTRIBUTED CONTROL / SHARED DISPLAYINSTUMENTATION, LOGIC AND COMPUTER SYSTEMSANSI/ISA-S5.4-1991 INSTRUMENT LOOP DIAGRAMSANSI/ISA – S5.5-1985 GRAPHIC SYMBOLS FOR PROCESS DISPLAYSISA –S12.00.01-1999 (IEC 60079-0 MOD) ELECTRICAL APPARATUS FOR USE IN CLASS I, ZONES0.1 &2HAZARDOUS (CLASSIFIELD) LOCATIONS – GENERAL REQUERIMENTSANSI/ISA-RP12.6-1995 WIRING PRACTICE FOR HAZARDOUS LOCATIONS INSTRUMENTATION PART 1INTRINSIC SAFETYISA –RP2.1-1978 MANOMETER TABLESISA-S26-1968 DYNAMIC RESPONSE TESTING OF PROCESS CONTROL INTRUMENTATION    
  27. 27. ISA-S75.13-1996 METHOD OF EVALUATING THE PERFORMANCE OF POSITIONERS WITH ANALOGINPUT SIGNALS AND PNENUMATIC OUTPUT.ISA-MC96.1-1982 TEMPERATURE MEASUREMENT THERMOCUPLESANSY-ISA-S67.14-1985 ENVIROMENTAL CONDITIONS FOR PROCESS MEASUREMENT AND CONTROLSYSTEMS TEMPERATURE AND HUMIDITYISA-S71.02-1991 ENVIRONMENTAL CONDITIONS FOR PROCESS MEASUREMENT AND CONTROLSYSTEMS: POWERANSI/ISA-S71.04-1985 ENVIRONMENTAL CONDITIONS FOR PROCESS MEASUREMENT AND CONTROLSYSTEMS: MECHANICAL INFLUENCESBIBLIOGRAFIA  • CREUS, Antonio. INSTRUMENTACIÓN INDUSTRIAL. Alfaomega. (Biblioteca) • COOPER, William. INSTRUMENTACIÓN ELECTRÓNICA Y TÉCNICAS DE MEDICIÓN. (Biblioteca). • DOEBELIN, Ernest O. DISEÑO Y APLICACIÓN DE SISTEMAS DE MEDICIÓN. • ZBAR, Paul B. PRÁCTICAS DE ELECTRICIDAD     
  28. 28. ECCI: ESCUELA COLOMBIANA DE CARRERAS INDUSTRIALESGuía No. 2 Fecha:Estudiante: ________________ Código:________________Objetivo general: Reconocer las características estáticas y dinámicaspropias de cada instrumento, las cuales permiten realizar o proponeruna clasificaciónObjetivos específicos: 1. Considerar la clasificación de los instrumentos según la función del instrumento. 2. Considerar la clasificación de los instrumentos según la variable del proceso. 3. Reconocer la existencia de varios tipos de señales de transmisión: neumáticas, electrónicas, digitales, hidráulicas y telemétricas, aplicadas en la industria    
  29. 29. MARCO TEORICO: 1. CLASES DE INSTRUMENTOSLos instrumentos de medición y control son relativamente complejos y su función puede comprenderse bien siestán incluidos dentro de una clasificación adecuada. Como es lógico, pueden existir varias formas paraclasificar los instrumentos, cada una de ellas con sus propias ventajas y limitaciones. Se consideran dosclasificaciones básicas; la primera relacionada con la función del instrumento y la segunda con la variable delproceso. 1.1. EN FUNCION DEL INSTRUMENTOInstrumento Ciego. Son aquellos que no tienen indicación visible de la variable, como los instrumentos de alarma tales como preostatos y termostatos (interruptores de presión y temperatura respectivamente) que poseen una escala exterior con un índice de selección de la variable, ya que solo ajustan el punto de disparo del interruptor o conmutador al cruzar el valor seleccionado. Son instrumentos ciegos: los transmisores de caudal, presión, nivel y temperatura sin indicación.Instrumentos IndicadoresDisponen de un índice y de una escalagraduada en la que puede leerse el valor dela variable. Según la amplitud de la escala sedividen en indicadores concéntricos yexcéntricos. Existen también indicadoresdigitales que muestran la variable en formanumérica con dígitos.    
  30. 30. Instrumentos registradores Registran con trazo continuo o en puntos la variable y pueden ser circulares o de gráfico rectangular o alargado según sea la forma del gráfico. Los registradores de gráficos circular suelen tener gráfico de 1 revolución en 24 horas mientras que los de gráfico rectangular la velocidad normal del gráfico es de unos 20 mm/hora.Los elementos primarios Están en contacto con la variable y utilizan o absorben energía del medio controlado para dar al sistema de medición una indicación en respuesta a la variación de la variable controlada. El efecto producido por el elemento primario puede ser un cambio de presión, fuerza, posición, medida eléctrica, etc. Por ejemplo en los elementos primarios de temperatura de bulbo y capilar, el efecto es la variación de presión del fluido que los llena y en los de termopar se presenta una variación de fuerza electromotriz.    
  31. 31. Los transmisores Captan la variable de proceso a través del elemento primario y la transmiten a distancia en forma de señal neumática de margen 3 a 15 psi (libras por pulgada cuadrada) o electrónica de 4 a 20 mA de c.c.Los transductores.Reciben una señal de entrada en función de una o más cantidades físicas y la convierten modificada o no a unaseñal de salida. Son transductores: un relé, un elemento primario, un transmisor, un convertidor PP/I (presión deproceso a intensidad), un convertidor PP/P (presión proceso señal neumática).Los convertidoresSon aparatos que reciben una señal de entrada neumática (3-15 psi) o electrónica (4 – 20mA c.c.) procedentede un instrumento y después de modificarla envían el resultado en forma de señal de salida estándar. Ejemplo:un convertidor P/I (señal neumática a señal electrónica).    
  32. 32. Los ReceptoresReciben las señales procedentes de los transmisores y les indican o registran. Los receptores controladoresenvían esta señal de salida normalizada a los valores ya indicados 3 – 15 psi en señal neumática, o 4 a 20 mAc.c. en señal electrónica, y que actúan sobre el elemento final de control.Los controladores Comparan la variable controlada (presión, nivel, temperatura) con un valor deseado y ejercen una acción correctiva de acuerdo con la desviación. La variable controlada la pueden recibir directamente como controladores locales o bien indirectamente en forma de señal neumática, electrónica o digital procedente de un transmisor.Elemento final de controlRecibe la señal del controlador y modifica el caudal del fluido o agentede control. En el control neumático, el elemento suele ser una válvulaneumática o un servomotor neumático que efectúan su carreracompletando 3 a 15 psi. (0,2 – 1 bar). En el control electrónico y enparticular en regulación de temperatura de hornos pueden utilizarserectificador de silicio (tiristores). Estos se comportan esencialmentecomo bobinas de impedancia variable y varían la corriente dealimentación de la resistencia del horno, en la misma forma en que unaválvula de control cambia el caudal de fluido en una tubería.    
  33. 33. Las señales neumáticas (3-15 psi o 0,2-1 bar o 0.2-1 kg/cm2) y electrónica (4-20 mA c.c.) permiten elintercambio entre Instrumentos de la planta. No ocurre así en los instrumentos de señal de salida digital(transmisores, controladores) donde las señales son propias de cada suministrador. No obstante, existe elpropósito de normalización, en particular en los sistemas de control distribuido, por parte de firmas deinstrumentos de control (Bailey, Foxboro, Honeywell, Rosemount y otros) que estudian la aplicación de unlenguaje o protocolo de comunicaciones. Existe un comité internacional de normas IEC-6SC que recibe lacolaboración de comités ISA SP50, ISA SP72 y EUROBOT de EUREKA, y que trabajan también en el campode normalización de las comunicaciones digitales entre los instrumentos de campo y los sistemas de control enla llamada tecnología del –fieldbus- o bus de campo. Intentos parciales de normalización se realizan enprocesos discontinuos (norma NAMUR) por empresas tales como AK20, BASF, BAYER, CIBA, GEIGY... quedefinen la misma programación para fábricas distintas con el fin de obtener productos con la misma calidad. 1.2. EN FUNCIÓN DE LA VARIABLE DE PROCESODe acuerdo con la variable del proceso, los instrumentos se dividen en instrumentos de caudal, nivel, Presión,temperatura, densidad y peso especifico, humedad y punto do rocío, viscosidad, posición, velocidad, pH,conductividad, frecuencia, fuerza, turbidez, etc.    
  34. 34. Esta clasificación corresponde específicamente al tipo de las señales medidas siendo independiente delsistema empleado en la conversión de la señal de proceso. De este modo, un transmisor neumático detemperatura del tipo de bulbo y capilar, es un instrumento de temperatura a pesar de que la medida se efectúaconvirtiendo las variaciones de presión del fluido que llena el bulbo y el capilar; el aparato receptor de la señalneumática del transmisor anterior es un instrumento de temperatura, si bien, al ser receptor neumático lopodríamos considerar instrumento de presión, caudal, nivel o cualquier otra variable, según fuera la señalmedida por el transmisor correspondiente; un registrador potenciométrico puede ser un instrumento detemperatura, de conductividad o de velocidad, según sean las señales medidas por los elementos primarios determopar, electrodos o dínamo.Asimismo, esta clasificación es independiente del número y tipo de transductores existentes entre el elementoprimario y el instrumento final. Así ocurre en el aso de un transmisor electrónico de nivel de 4 a 20 mA c.c., unreceptor controlador con salida de 4-20 mA c.c., un convertidor intensidad-presión (I/P) que transforma la señalde 4-20mA c.c. a neumática de 3-15 psi y la válvula neumática de control; todos estos instrumentos seconsideran de nivel.En la designación del instrumento se utiliza en el lenguaje común las dos c1asificaciones expuestasanteriormente. Y de este modo, se consideran instrumentos tales como transmisores ciegos de presión,controladores registradores de temperatura, receptores indicadores de nivel, receptores controladoresregistradora de caudal, etc,Código de identificación de instrumentosPara designar y representar los instrumentos de medición y control se emplean normas muy variadas que vecesvarían de industria en industria. Esta gran variedad de normas y sistemas utilizados en las organizacionesindustriales indica la necesidad universal de una normalización en este campo. Varias sociedades han dirigidosus esfuerzos en este sentido, y entre ellas se encuentra como una de las importantes la Sociedad deInstrumentos de Estados Unidos, ISA (Instrument Society of America) cuyas normas tienen por objetoestablecer sistemas de designaci6n (código y símbolos) de aplicación a las industria químicas, petroquímicas,aire acondicionado, etc.Normas ISA-S5.1-84 de ANSI/ISA del año 1984 con una rectificación el año 1992, sobre instrumentaciónde medición y control.Normas ISA-S5.2-76 del año 1976 con una rectificación el año 1992 Binary Logic Diagrams for ProcessOperations sobre símbolos de operaciones binarias de procesos.Normas ISA.S5.3 Graphic Symbols for Distributed Control/Shared Display Instrumentation. Logic andComputer Systems 1983, sobre símbolos de sistemas de microprocesadores con control compartido.    
  35. 35. 2. TRANSMISORESLos transmisores son instrumentos que captan la variable de proceso y la transmiten a distancia a uninstrumento receptor indicador, registrador, controlador o una combinación de estos. Existen varios tipos deseñales de transmisión: neumáticas, electrónicas, digitales, hidráulicas y telemétricas. Las másempleadas en la industria son las tres primeras, las señales hidráulicas se utilizan ocasionalmente cuando senecesita una gran potencia y las señales telemétricas se emplean cuando hay una distancia de varioskilómetros entre el transmisor y el receptor.Los transmisores neumáticos generan una señal neumática variable linealmente de 3 a 15 psi (libras porpulgada cuadrada) para el campo de medida de 0-100 % de la variable. Esta señal está normalizada por laSAMA-Asociación de fabricantes de instrumentos (Scientific Apparatus Makers Asociation) y ha sido adoptadaen general por los fabricantes de transmisores y controladores neumáticos en Estados Unidos. En los paísesque utilizan el sistema métrico decimal se emplea además la señal 0.2-1 bar (1 bar = 1,02 kg/cm2) que equivaleaproximadamente a 3-15 psi (3 psi = 0.206 bar o 0,21 kg/cm2, 15 psi = 1,033 bar o 1,05 kg/cm2), las unidadesnormalizadas son el pascal y el bar (1 bar = 105 pascal). El alcance de esta señal métrica es un 6 % más cortoque la señal de 3-15 psi, por lo cual la adopción en una planta industrial de una u otra norma obliga a calibrarcon la misma señal adoptada el conjunto completo transmisor, controlador, válvula de control y todos losinstrumentos accesorios que se utilicen (extractores de raíz cuadrada. computadores neumáticos,posicionadores, etc.). Nótese que en las válvulas de control pueden emplearse señales neumáticas de 0,6-1.4,de 0,4-2 o de 0,8-2,4 bar, gracias a la función de conversión de la señal de entrada 3-15 psi (0,2-1 bar) quepuede realizar el posicionador acoplado a la válvula o bien mediante resortes especiales dispuestos en elservomotor de la válvula.Los transmisores electrónicos generan la señal estándar de 4-20 mA c.c, a distancias de 200 m a 1 Km.,según sea el tipo de instrumento transmisor. Todavía pueden encontrarse transmisores que envían las señales1-5 mA c.c., 10-50 mA c.c., 0,5 mA c.c., 1-5 mA c.c., 0-20 mA c.c., 1-5 V c.c., utilizadas anteriormente a lanormalización a la señal indicada de 4.20 mA c.c. La señal 1-.5 V c.c., es útil cuando existen problemas en elsuministro electrónico. De todos modos, basta conectar una línea de 250 Ω para tener la señal electrónica de:4.20 mA c.c. La señal electrónica de 4 a 20 mA c.c. tiene un nivel suficiente y de compromiso entre la distanciade transmisión y la robustez del equipo. Al ser continua y no alterna, elimina la posibilidad de captarperturbaciones, está libre de corrientes parásitas y emplea sólo dos hilos que no precisan blindaje. La relaciónde 4 a 20 mA c.c. es de 1 a 5, la misma que la razón de 3 a 15 psi en señal neumática y el nivel mínimoseleccionado de 4 mA elimina el problema de la corriente residual que se presenta al desconectar los circuitos atransistores. La alimentación de los transmisores puede realizarse con una unidad montada en el panel decontrol y utilizando el mismo par de hilos del transmisor. El cero vivo, con que empieza la señal (4 mA c.c.)ofrece las ventajas de poder detectar una avería por corte de un hilo (la señal se anula) y de permitir eldiferenciar todavía más el ruido de la transmisión cuando la variable está en su nivel más bajo. Nótese que elnivel mínimo de la señal neumática de salida no es cero, sino que vale 3 psi (0.2 bar). De esto modo seconsigue calibrar correctamente el instrumento, comprobar su correcta calibración y detectar fugas de aire enlos tubos de enlace con los demás instrumentos neumáticos.La señal digital consiste en una serie de impulsos en forma de bits. Cada BIT consiste en dos signos, el 0 y el1 (código binario), y representa el paso (1) o no (0) de una señal a través de un conductor. Por ejemplo, dentrode la señal electrónica de 4-20 mA c.c., los valores binarios de 4, 12 y 20 mA son respectivamente de00000000, 01111111 Y 11111111. Si la señal digital que maneja el microprocesador del transmisor es de 8 bits,entonces puede enviar 8 señales binarias (0 y 1) simultáneamente. Como el mayor número binario de 8 cifrases: 11111111 = 1+1*22+...+27 = 255 Se sigue que la precisión obtenida con el transmisor debida exclusivamente    
  36. 36. a la señal digital es de: (1/255)*100= ±0,4 % Si la señal es de 16 bits, entonces puede manejar 16 señalesbinarias (0 y 1). Siendo el mayor número binario de 16 cifras 1111111111111111 = 1 + 1* 2 + 1*22 +... + 1 .215 =65535 La precisión obtenida con el transmisor debida a la señal digital es de: (1/65535)*100 = ±0.00152Transmisores Telemétricos. Sistema SCADA. Supervisory Control Automatic Data Acquisition. Lasfibras ópticas en la transmisión se están utilizando en lugares de la planta donde las condiciones son duras(campos magnéticos intensos que influyen sobre la señal). Los módulos de transmisión pueden ser excitadospor fuentes de luz de LED (Light Emiting Diodes) o diodo láser. Los módulos receptores disponen defotodetector y preamplificador. Con los cables o multicables de fibra óptica y con convertidores electro ópticos.La transmisión de datos puede efectuarse con multiplexores transmitiendo simultáneamente a la velocidadmáxima definida por la norma RS232 de transmisión de datos para modems y multiplexores. Las ventajas de latransmisión por fibra óptica incluyen la inmunidad frente al ruido eléctrico (interferencias electromagnéticas), elaislamiento eléctrico total, una anchura de banda mayor que la proporcionada por los correspondientes hilos decobre, ser de pequeño tamaño y de poco peso, sus bajas pérdidas de energía, y que: las comunicaciones seanseguras.ACTIVIDAD:Actividad No. 1:CALIBRACIÓN DE UN INSTRUMENTO INDICADOR DE MEDIDA DE CORRIENTE CONTINUABIBLIOGRAFÍA: • CREUS, Antonio. INSTRUMENTACIÓN INDUSTRIAL. Alfaomega. (Biblioteca) • COOPER, William. INSTRUMENTACIÓN ELECTRÓNICA Y TÉCNICAS DE MEDICIÓN. (Biblioteca). • DOEBELIN, Ernest O. DISEÑO Y APLICACIÓN DE SISTEMAS DE MEDICIÓN. • ZBAR, Paul B. PRÁCTICAS DE ELECTRICIDAD       
  37. 37. ECCI: ESCUELA COLOMBIANA DE CARRERAS INDUSTRIALESGuía No. 3 Fecha:Estudiante: ________________ Código:________________Objetivo general: Determinar la importancia de los circuitos puentetanto de corriente continua como de corriente alterna, en laimplementación de interfases entre los transductores y el sistema deprocesamiento de señal.Objetivos específicos: 1. Conocer las características, funcionamiento y el sustento matemático de los circuitos puente, tanto de corriente continua como de corriente alterna. 2. Conocer la importancia de los circuito puente como interfase entre los elementos primarios y el procesamiento de señal 3. Conocer las mejoras en cuanto a precisión y exactitud que adicionan los circuitos puente en un sistema de adquisición de datos 4. Identificar los circuitos puentes en aplicaciones industriales y como base de algunos instrumentos de medida.    
  38. 38.   
  39. 39.   
  40. 40. ACTIVIDAD:Aplicación de los puentes de corriente continua en la implementación de un instrumento de medida decorriente continuaBIBLIOGRAFÍA:• COOPER, William. INSTRUMENTACIÓN ELECTRÓNICA Y TÉCNICAS DE MEDICIÓN. (Biblioteca).     

×