Australia china acedp mdba breifing final


Published on

Published in: Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Australia china acedp mdba breifing final

  1. 1. Oldest continuousculture Australia’s Murray Darling – an overviewPondi story 40kyears Jason Alexandra February 2011 60 million years of separate evolution
  2. 2. Structure –1. Nature of the basin2. A brief history of water policy3. The Basin Plan4. Challenges ahead, including climatechange6. Some tentative conclusions
  3. 3. Water is a strategic resource (and lack of it a limitation).Excellence in water governance is a strategic opportunity.Energy rich and water poor – learn to live like Australians Accept the nature of the place
  4. 4. 1 The nature of river basinsRiver systems are highly evolved, co-evolvedcomplex systems based on long term andcomplex “negotiations” between culture andnature
  5. 5. Nature & Nurture
  6. 6. Its today news ….but it’s a bigger, longer story of water reform
  7. 7. What  is  the  MDB?  A  large  flat  semi  arid  basin.  A  hydro-­‐graphic  unit.  An  icon?  An  example  of  coopera?ve  federalism  and  a  challenge  to  it?  A  21  C  test  bed  for  ESD?  
  8. 8. Understanding the basics egaverage rainfall and runoffgeneration Distribu?on  of  Australia’s  surface  run-­‐off   >1 mill i o n km Austra 2 = 1/7 lia, size th of Spain of Fran ce and Covers Territor 5 States and ies >popul at people ion of 2 millio n > 40% agricul tural pr oduce
  9. 9. Representa?on  of  average   flow  volumes     9
  10. 10. Flow  genera?on    
  11. 11. A river, a basin, a story, a nation and its symbols A changing relationship with natureMurray mouth, Coorong and lower lakes
  12. 12. Climate change: adds new challenges for basin management, adding to old challenges.We need integrated planning and assessmentsComplexity of climate and ecological systems Invest in scientific capacity - dynamic non steady state systems Critical questions re thresholds and tipping points
  13. 13. Cumulative effects of water and land use at abasin scale?
  14. 14.  Cumula?ve,  compounding  and   synergis?c  effects     Difficulty  in  predic?ng  and  avoiding  ?pping  points  in  natural  systems  –  eg   Aral  Sea  
  15. 15. Australia - an ancient nutrient poor land with low population, limited industrialdevelopment and poor water quality and ecological condition in most rivers
  16. 16. Australian ecosystems evolved to capture waterand nutrients. When disturbed through clearing for agriculture they leak salt, soils, nutrients
  17. 17. Modified catchments, Very high nutrient and nutrient and suspended suspended sediment loads sediment loads and habitat Largely unmodifiedRiver and catchment Condition
  18. 18. Cost and consequences of transforming an ancient continentMost agricultural lands have erosion 5-50 times greater than pre-European settlement.4M tonnes of sediment pa and phosphorus exports - about 13,000 tonnes pa
  19. 19. Biodiversity  conserva?on  challenges  Global  treaty  obliga?ons  
  20. 20. Responsibility for 60 million years of separate evolutionInternational obligations to protect biodiversity -creation stories or extinction stories?
  21. 21. Ramsar wetlands - Australia’sinternational obligations? 16 in MDB •  ~28,000 Narran Gwydir •  6.3 million ha Lakes wetlands •  98% floodplains •  ~3% protected Macquarie Marshes Lowbidgee floodplain Coorong Chowilla floodplain Kulkyne Barmah-Millewa Lakes Forest
  22. 22. “Successive Governments sponsored headlinecloser settlement and intensive irrigationdevelopment, with “dreams of taming the copy   rivers, greening the desert, and making land productive, running deep in the national psyche” (Lines 1994) andnotwithstanding, punishing droughts andmisconceptions about the severity of the natural constraints to settlement and production (Taylor 1940).
  23. 23. “dreams of taming the rivers, greening the desert, andmaking land productive, run deep in the national psyche” Large  dams  era  1920-­‐1980’s  –   na?on  building  and  response  to  climate  variability?   1990’s  new  policy  direc?ons  
  24. 24. A  fully  regulated/engineered  system  
  25. 25.  Major  Water  Storages  on  almost  all  tributaries  in  the  MDB
  26. 26. Government funded development of dams Periods of water diversion development (Kingsford) 18,000,000 Murray DarlingCapacity (ML) 12,000,000 6,000,000 1890 1912 1934 1956 1978 2000
  27. 27. An  Irriga3on  Drought  –  several  dry  years   June 2008 2,220 GL
  28. 28. Growth  in  Basin  diversions   12,000   10,000   8,000  GL/year   6,000   4,000   2,000   0   1930   1940   1950   1960   1970   1980   1990   2000   29
  29. 29. Irrigation crop and technology changes Water use efficiency through technology, Knowledge of crop demands – eg partial root zone drying
  30. 30. Building  on  past  reform   1901   1914   Cons3tu3on   River  Murray   1987   Commission   Murray-­‐Darling   1990’s     Basin  Commission   Cap  on  Diversions   &   Water  markets     2004    Na3onal  Water   2007   Ini3a3ve   Commonwealth   2008   2010     &   Water  Act   COAG     Guide  to  the   The  Living   &   Agreement   proposed  Basin  Murray  First  Step   Murray-­‐Darling   Plan   Basin  Authority   31
  31. 31. A brief history of Australian water policy  1890’s – 1980’s Development era – “drought, royal commission, new dam”  1994 COAG reforms – environmental flows, unbundling water and land “titles”; corporatisation and cost recovery  1995 – MDB “Cap” on more extractions  National Water Initiative 2004 – reaffirms commitments to reform agenda, eflows and markets’ role in reallocating water
  32. 32. Key  Elements  of  the  Basin  Plan  
  33. 33. Released October 2010!!!
  34. 34. Objec?ves  of  the  proposed  Plan  •  Ecological  health  -­‐  op?mise  social,  cultural  and   economic  wellbeing  •  Sustainable  limits  on  take  •  Environmental  resilience  •  Appropriate  water  quality  •  Efficient  and  effec?ve  water  markets   35
  35. 35. Water  Act  requirements  Basin  Plan  must  contain  15  elements,  including:  •  Sustainable  diversion  limits  (SDLs)  •  Cri?cal  human  water  needs  •  Water  trading  rules  •  Environmental  Watering  Plan  •  Water  Quality  &  Salinity  Management  Plan   36
  36. 36. Water  Act  requirements  In  preparing  the  Plan,  the  Authority  must  take  into   account  :  •  best  available  science  and  socio-­‐economic  analysis   and    •  the  principles  of  ecologically  sustainable   development     37
  37. 37. How it will work Long  Term  Planning   Annual  Management   State   Basin   Water   Commonwealth   State   SDL   Plan   Resource   Accredita?on   Alloca?ons   Compliance   Plan   State  and  territory  water   Evalua?ng   agencies   Success   MDBA   38
  38. 38. When it takes effectproposed FinalBasin BasinPlan Plan 39 2010 2014 2020
  39. 39. Working  out  the  Sustainable  diversion  limit     How  much  addi?onal   water  does  the   environment  need?   What  are  the   poten?al  impacts  on   the  community?   What  are  the   sustainable  diversion   limit  proposals?   How  to  manage  the   transi?on?   40
  40. 40. 30,000 wetlands 2,442 keyenvironmental assets 4 key ecosystem functions 106 hydrological indicator sites 18 KEAs 88 KEFsRange of additionalsurface water for the environment: 3,000 - 7,600 GL/y 41   41
  41. 41. 30,000 wetlands 42
  42. 42. 30,000 wetlands 2,442 key environmental assets 4 key ecosystem functions 43
  43. 43. 30,000 wetlands 2,442 key environmental assets4 key ecosystem functions106 hydrological indicator sites (18 key assets,88 key functions) 44
  44. 44. 30,000 wetlands 2,442 key environmental assets4 key ecosystem functions106 hydrological indicator sites (18 key assets,88 key functions) 3,000 to 7,600 GL additional surface water needed for the 45 environment
  45. 45. Current  diversion  limits  All  types  of  take  =  total  13,700  GL/y  •  For  surface  water  :     –  Watercourse  diversions    =  10,940  GL/y   •  Diversions  from  streams   •  Floodplain  harves?ng   –  Intercep?on  ac?vi?es  =  2,740  GL/y   •  Farm  dams  and  forestry  planta?ons   –  SDL  proposed  reduc?on  of  3000  to  4000  GL/y   –  Or  about  1  third   46
  46. 46. Sustainable diversion limit proposals: surface water Water resource plan areas Murray-­‐Darling  Basin   CURRENT   SDL  PROPOSALS   13,700   9,700  –  10,700   3000-­‐4000  gl/y  or   22  –  29%   reduc3on   Long term average 47reduction (GL/y)
  47. 47. Socio-­‐economic  impact  assessment  Industry  impacts  High   Irrigated  broadacre  agriculture  Medium   Cojon  and  dairy  Low   High  value  perennial  hor?culture     (trade  a  major  contribu?ng  factor)  Regions  most  impacted  (by  $  value)  Southern  Basin   Murrumbidgee,  Goulburn-­‐Broken,   NSW  &  Vic  Murray,  Loddon-­‐Avoca  Northern  Basin   Gwydir,  Condamine-­‐Balonne,  Namoi,     Macquarie-­‐Castlereagh   48
  48. 48. Basin  plan  content  •  Cri?cal  human  water  needs  (s.86A)  •  Environmental  Watering  Plan  (item  9)  •  Water  Quality  and  Salinity  Management  Plan     (item  10)  •  Trading  rules  (item  12)  •  Water  resource  plan  accredita?on  requirements   (item  11)  •  Monitoring  and  Evalua?on  Plan    (item  13)  •  Compliance  (item  8)   49
  49. 49. Environmental  Watering  Plan  –  Item  9    plan  for  managing  environmental  water   50
  50. 50. Environmental  Watering  Plan  Objec?ves,  principles  and  methods  to  plan  and   priori?se  Framework  for  planning,  coordina?ng  and  managing   environmental  water  •  Regional  long  term  planning  (Basin  states)  •  Regional  priori?sa?on  (Basin  states)  •  Basin-­‐scale  priori?sa?on  (MDBA)  •  Annual  monitoring,  evalua?on  and  repor?ng   51
  51. 51. Water  Quality  &  Salinity  Management  Plan  -­‐  Item  10  •  Water  quality  parameters:   –  Salinity   –  blue-­‐green  algae   –  Temperature   –  dissolved  oxygen   –  Turbidity   –  Toxicants   –  Nutrients   –  pH  •  Targets  are  non-­‐mandatory  •  State  water  resource  plans  must  include  a  Water   Quality  Management  Plan     52
  52. 52. Water trading rules – Item 12•  Commence  when  Plan  adopted  For  all  water  resources  and  holders  of  tradable  water   rights  and  aim  to   –  reduce  barriers  to  trade   –  minimise  transac?on  costs   –  Provide  consistent  informa?on   –  protect  environmental  requirements  •  State  trading  rules  must  comply  with  the  Basin  Plan   53
  53. 53. Challenges ahead - The approaching storm?climate chaos!!! And its impacts!!!
  54. 54. Climate Climate Changechange is likelyto be thegreatest yetmost uncertainthreat to theshared waterresources of “Most of the effects ofthe MDB climate change operateUp to 4400 GL/ through water”yr reduction inflows in 20 Sir Nicholas Stern, 2007years
  55. 55. Future  Projec?ons  •  Global  emissions  tracking   on  the  higher  IPCC   scenarios  (such  as  A1F1)  •  Warmer  drier  condi?ons   in  the  future  under  all   global  emission  scenario’s   Projected changes in run-off at 2030 under scenario A1B, showing the number of climate models (out of 15) yielding an increase or decease in run-off; from F. Chiew.
  56. 56. Climate is hotter and drier Global average temperature Satellite estimate of soil moisture Australian average temperature
  57. 57. lack of sustained combined with intervening wet record high periods temperatures most notably in autumn → a drought without historical precedent in SoutheasternAustralian Bureau of Meteorology, 2008 Australia
  58. 58. Climate change projections – CSIRO (Chew)•  Large uncertainties in global warming projections – dependent on greenhouse gas emission and global climate sensitivity to increased greenhouse gas concentrations.•  As a result of global warming - extreme rainfall will be more intense - some regions will have more rainfall, other regions will have less rainfall.•  Large uncertainties in GCM modelling of local rainfall response to global warming.
  59. 59. What  if  this  Drought  is  Different?    If  the  factors  that  make  Australia’s  climate  variable  are  vulnerable  to  global  warning?     New  states  or  frequency?   Key River Murray Catchment Area
  60. 60. Amplifica?on  -­‐   decreases  in   runoff  
  61. 61. Rainfall  &  Streamflow  •      (hypothe?cal  catchment)   30 units 20 units streamflow streamflow 100 rainfall units 90 rainfall units 70 units 70 units evaporation, evaporation, transpiration & transpiration & soil moisture soil moisture threshold threshold 10% less rainfall 30% less streamflow
  62. 62. Lower  rainfall  =  much  lower  Streamflow  CSIRO and Australian Bureau of Meteorology, 2007)
  63. 63. Water scarcity eg Murray mouth – no flows to sea for years – major ecological effectsCLIMATE uncertainty.Crude water balanceET = 94% of P precipitation 6% = R (runoff, rivers, wetlands,2% = end of system or total irrigation demand) (Roderickand Farquhar 2009)What if ET goes up and P goes down ?Rainfall decline is amplified 4 times in reduced runoffWith irrigation all R is converted to ET via infrastructure –therefore almost no flow to ocean (lower lakes)
  64. 64. Possible Impacts of Climate Change on Other Risks ? Climate ? change Increased demandHigher evaporation. for groundwater asMore farm dams as surface watersurface water ? ? availability reduces?availability reduces? ? Greater irrigation Higher frequency efficiency as surface Increased forest and intensity of water availability evapo-transpiration bushfires due to reduces? due to higher higher temps and temps? worse droughts?
  65. 65. Maximumreduction inyield:Vic 2003fires:Reductionsof up to1237 GL/yin 20 years
  66. 66. Extraction Groundwatercan lead toloss ofsurfacewater.Can be biglag times
  67. 67. Growth  in  Water  Bodies    Between  1994-­‐2005  –   near  Alexandra   ● Existing water bodies - 1994 ● New water bodies - 2005 Source: Geoscience Australia
  68. 68. The  Big  Challenges  The tough issues are all framed by and driven by•  Climate change,•  Economic change•  Water policy reform – including eflows•  Change in values and understanding Major change is inevitable (happening), but what roles for government ? Policies to support adaptations and transitions? Maintain reform momentum Govern resources in the public interest
  69. 69. More  Challenges  Planning under deep uncertainty – stationarity isdead.Climate impact and risk managementAppropriate institutions and policies for adaptation;Policy science integration? Need for robust analysisand auditing of performanceUnderstanding and acting on thresholds of change –not crash testing
  70. 70. Conclusion 1: develop capacity for robust water policy under uncertaintyUse scenarios - plan for extremes - eg low water availability and deeper drought/climate change impactsPlan for long term reductions in rainfall and runoffAccept a future of intense competition for waterRecognise nature as a legitimate userIn face of uncertainty:•  Institutional and policy innovation required•  Build diverse, local adaptive capacity•  Adopt policies to support adjustment and adaptation eg water market reforms supports risk management and local adaptation
  71. 71. Conclusions 2: Water and droughtLearn to live asAustralia’sWater is a limitedresource!Bush burns!Floodplains flood!Droughts dry out thecountry –70 out of 200 years
  72. 72. River  basin  management  involves  culture,  prac3ce   and  governance.    We  need  innova3on  system  and  governance   systems  that  work.    New  strategic  R&D  interven3ons  –  from  problem   solving  to  shared  learning  and  system  solu3ons  
  73. 73. Conclusions  3:  Pedagogy  of  complexity  –  Water  is  connected  to  everything  -­‐  Interrelated  issues  require  mul?-­‐disciplinary,  integrated   and  holis?c  approaches   Campbell 2008
  74. 74. …“ideas are all Australia has … Not military might, ora large population, or unique resources. … Ideas arewhat must sustain our democracy, nurture ourcommunity and drive our economy into new areas(Paul Keating (2002)