Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

G.E.T. Smart - Smart Renewables: Principal Power Presentation


Published on

Published in: Education

G.E.T. Smart - Smart Renewables: Principal Power Presentation

  1. 2. PRESENTATION OVERVIEW <ul><li>THE MARKET </li></ul><ul><li>PRINCIPLE POWER </li></ul><ul><li>WHY OFFSHORE WIND? </li></ul><ul><li>CHALLENGES IN OFFSHORE WIND </li></ul><ul><li>THE WINDFLOAT </li></ul><ul><li>MARKET DEVELOPMENT PROJECTS </li></ul><ul><li>REVIEW/PREDICTIONS </li></ul>
  2. 3. 1970: 3.7 BILLION PEOPLE Source: NASA
  3. 4. 2010: 7 BILLION PEOPLE Source: NASA
  4. 5. THE MARKET <ul><li>UNADDRESSED MARKETS </li></ul><ul><ul><li>Coastal areas with high renewable energy demand </li></ul></ul><ul><ul><li>Best resource is deep-water offshore wind </li></ul></ul><ul><li>TARGET LOCATIONS </li></ul><ul><ul><li>Coasts of Portugal, France, Spain, the UK and Japan </li></ul></ul><ul><ul><li>United States </li></ul></ul><ul><ul><ul><li>West Coast </li></ul></ul></ul><ul><ul><ul><li>Maine </li></ul></ul></ul><ul><ul><ul><li>Great Lakes </li></ul></ul></ul><ul><ul><li>North Sea </li></ul></ul><ul><li>MARKET POTENTIAL </li></ul><ul><ul><li>> 1,000 GW </li></ul></ul>
  5. 6. PRINCIPLE POWER INC. <ul><li>ESTABLISHED IN OCTOBER 2007 </li></ul><ul><ul><li>10 employees </li></ul></ul><ul><ul><li>Locations in US and Europe </li></ul></ul><ul><li>MISSION </li></ul><ul><ul><li>Develop and commercialize the WindFloat </li></ul></ul><ul><li>TECHNOLOGY </li></ul><ul><ul><li>Core IP patented, WindFloat system patent pending </li></ul></ul><ul><li>MARKET </li></ul><ul><ul><li>Intermediate and deep-water wind sites - Presently untapped </li></ul></ul><ul><ul><li>Natural evolution of offshore wind development </li></ul></ul>Deep-water offshore wind is inevitable
  6. 7. WHY OFFSHORE WIND? <ul><li>WHY OFFSHORE WIND? </li></ul><ul><ul><li>Higher wind resource and less turbulence </li></ul></ul><ul><ul><li>Large ocean areas available </li></ul></ul><ul><ul><li>Onshore sites are scarce </li></ul></ul><ul><ul><li>Capacity of offshore wind is theoretically unlimited </li></ul></ul><ul><li>WHY FLOATING OFFSHORE WIND? </li></ul><ul><ul><li>Limited shallow water sites </li></ul></ul><ul><ul><li>Majority of resource in deep water </li></ul></ul><ul><ul><li>Large ocean areas available </li></ul></ul><ul><ul><li>Less restrictions for offshore deployment and reduced visual impact </li></ul></ul><ul><ul><li>>2 TW resource potential in primary markets </li></ul></ul>
  7. 8. OFFSHORE WIND RESOURCE Source: Willet Kempton, U of DE Delaware 20 miles Offshore Nearshore Onshore
  8. 9. OFFSHORE WIND – PRIMARY MARKET POTENTIAL AND RESOURCE Source: Risø National Laboratory, Roskilde, Denmark Source: US National Renewable Energy Lab
  10. 11. WATER DEPTH ECONOMICS Semi-Sub Monopile 0-30m, 1-2 MW Jacket/Tripod 25-50m, 2-5 MW Floating Structures >50m, 5-10MW Spar TLP Floating Structures >120m, 5-10MW Water Depth
  11. 12. OFFSHORE WIND CHALLENGES <ul><li>FIXED FOUNDATIONS </li></ul><ul><ul><li>Water depth </li></ul></ul><ul><ul><ul><li>Overturning of moment of wind turbines to be mitigated by the foundation </li></ul></ul></ul><ul><ul><li>Installation of wind turbines offshore </li></ul></ul><ul><ul><ul><li>Requires large installation vessels </li></ul></ul></ul><ul><ul><ul><li>Acceptable weather window (sea state limitations) </li></ul></ul></ul><ul><li>FLOATING FOUNDATIONS </li></ul><ul><ul><li>Pitch motion </li></ul></ul><ul><ul><ul><li>pitch acceleration lead to structural fatigue (gyroscopic moment induced yaw) </li></ul></ul></ul><ul><ul><li>Installation and Commissioning scenarios </li></ul></ul><ul><ul><ul><li>Need to “keep it simple” influences design significantly </li></ul></ul></ul>
  12. 13. THE WINDFLOAT <ul><li>TURBINE AGNOSTIC </li></ul><ul><ul><li>Conventional (3-blade, upwind) </li></ul></ul><ul><ul><li>No major redesign </li></ul></ul><ul><li>HIGH STABILITY PERFORMANCE </li></ul><ul><ul><li>Static Stability - Water Ballast </li></ul></ul><ul><ul><li>Dynamic Stability - Heave Plates </li></ul></ul><ul><ul><li>Efficiency – Closed-loop Active Ballast System </li></ul></ul><ul><li>DEPTH FLEXIBILITY (>50M) </li></ul><ul><li>ASSEMBLY & INSTALLATION </li></ul><ul><ul><li>Port assembly </li></ul></ul><ul><ul><li>No specialized vessels required, conventional tugs </li></ul></ul><ul><ul><li>Industry standard mooring equipment </li></ul></ul>
  13. 14. WINDFLOAT – DEVELOPMENT HISTORY EDP and Principle Power sign MOA for phased development of WindFloat technology and commercial deployment of a wind farm up to 150MW Wave tank testing of 1:80 th scale Minifloat III concept at Oceanic MI&T performs Minifloat proof of concept model tests Wave tank testing of Minifloat I & II concept MI&T files Minifloat patent 1 Wave tank testing of 1:96 th scale Minifloat IV concept at University of California, Berkeley tow tank Minifloat patent 1 issued US7086809, Minifloat patent 2 filed Wave tank testing of 1:67 th scale WindFloat model at University of California, Berkeley tow tank Principle Power exclusively licenses WindFloat intellectual property from MI&T Minifloat patent 2 isssued US7281881 EDP initiates the WindFloat Project with Phase-0, a full-scale WindFloat unit with a non-grid connected sub-megawatt wind turbine in the Algarve region Wave tank testing of 1:96 th scale WindFloat model at University of California, Berkeley tow tank Principle Power purchases outright all intellectual property for WindFloat from MI&T
  14. 15. LARGE OFFSHORE TURBINE SUPPLIERS Product & Track Record Development Plan Product/size (MW) Drive type # offshore installed 2008 2009 2010 2011 Siemens S90 - 3.6 Multi stage gearbox 83 Serial  S90 - 3.6 Direct drive Prototype 0-series 6 Direct drive Prototype 0-series 10 Direct drive Prototype Vestas V90 – 3 Multi stage gearbox 332 Serial  5+ Multi stage gearbox Prototype REpower 5M – 5 Multi stage gearbox 2 Serial  6 Multi stage gearbox Prototype 0-series Multibrid M5000- 5 Single stage gearbox 0-series Serial  BARD 5 Multi stage gearbox Prototype 0-series Serial  Clipper 7 - 10 Planetary gearbox Prototype XEMC Darwind DD115 – 5 Direct drive Prototype GE (ScanWind) 4 Direct drive
  15. 16. FLOATING OFFSHORE WIND CONCEPTS <ul><li>DEVELOPMENT TIMELINE </li></ul><ul><li>2007 </li></ul><ul><ul><li>Statoil Hydro and Siemens sign agreement for Hywind project </li></ul></ul><ul><ul><li>Sway raises €16.5M in private placement </li></ul></ul><ul><li>2008 </li></ul><ul><ul><li>Blue H half-scale prototype installation </li></ul></ul><ul><ul><li>EDP and Principle Power partner to deploy WindFloat technology </li></ul></ul><ul><li>2009 </li></ul><ul><ul><li>Hywind full-scale prototype installation with 2.3MW turbine </li></ul></ul><ul><li>2011 </li></ul><ul><ul><li>Principle Power to deploy full scale WindFloat off Western Portuguese coast. </li></ul></ul>Trade name WindFloat Hywind Blue H Sway Developer Principle Power (US) Statoil Hydro (NO) Blue H (NL) Norwegian consortium (NO) Foundation type Semi-submersible (moored 4-6 lines) Spar (moored 3 lines) Tension Leg Platform Hybrid Spar/TLP (single tendon) Water Depths > 40 m >100 m > 40 m 100 m - 400 m Turbine 3-10MW Existing technology! 2.3 MW Siemens 2 bladed “Omega” under development Multibrid Downwind under development Installation Tow out fully commissioned Dedicated vessel- tow out and upending Tow out on buoyancy modules until connection Dedicated vessel- tow out and upending Turbine installation Onshore Offshore Onshore Offshore Strengths Dynamic motions, installation, overall simplicity of design Existing turbine and hull technology, well funded First sub-scale demo deployed Low steel weight Challenges Steel cost Dynamic motions, installation Mooring cost, turbine design, turbine coupling with tendons Installation and maintenance, downwind 3-blade turbine Stage of Development Ready for prototype testing Full-scale prototype installed in 2009 Half-scale prototype installed in 2008 Development of the concept
  16. 17. SYNERGIES WITH OIL & GAS Beatrice Blue H <ul><li>An industry of Experience… </li></ul><ul><li>Floating structures date back to 1977 </li></ul><ul><li>New technology developments have traditionally been based on new needs, coming from resources identification </li></ul>WindFloat Hywind
  17. 18. PATH TO COMERICIALISATION <ul><li>WINDFLOAT SPECIFIC COST </li></ul><ul><ul><li>Reduction in steel weight – application of wind industry safety factors and weather criteria </li></ul></ul><ul><ul><li>Optimization of platform to turbine aspect ratio (more motion) </li></ul></ul><ul><ul><li>Tow vessels on long term contract </li></ul></ul><ul><ul><li>Fabrication methods – reducing manual welding </li></ul></ul><ul><ul><li>Engineering and project management </li></ul></ul>≈ 40% Cost Reduction Beatrice Alpha Ventus
  18. 19. MARKET DEVELOPMENT PROJECTS <ul><li>PORTUGAL – 150 MW </li></ul><ul><ul><li>WINDPLUS, SA – JV between EDP, PPI & A. Silva Matos </li></ul></ul><ul><ul><li>Pilot installation funding – EDP & Portuguese Government </li></ul></ul><ul><ul><li>Three phase build-out to 150MW – Pilot, pre-commercial, commercial </li></ul></ul><ul><li>TILLAMOOK, OR, USA – 150 MW </li></ul><ul><ul><li>Initial permitting activities </li></ul></ul><ul><ul><li>MOA with TIDE </li></ul></ul><ul><ul><li>MOA with Tillamook PUD </li></ul></ul><ul><ul><li>Identifying project developer </li></ul></ul><ul><li>MAINE, USA – 150 MW </li></ul><ul><ul><li>Selecting site / project developer </li></ul></ul>
  19. 20. IN SUMMARY - WINDFLOAT OFFERS: <ul><li>LOWER DESIGN & DATA COLLECTION COSTS </li></ul><ul><ul><li>Farm design rather than individual unit </li></ul></ul><ul><ul><li>Area wide data, rather than unit specific </li></ul></ul><ul><li>MINIMIZED OCEAN FLOOR & ENVIRONMENTAL IMPACTS </li></ul><ul><ul><li>Use of conventional anchors </li></ul></ul><ul><ul><li>Due to reduced bio activity in >50 m depth </li></ul></ul><ul><li>LOWER INSTALLATION & INSURANCE COSTS </li></ul><ul><ul><li>Complete unit shore assembly, No need for heavy lift vessels (Jones Act) </li></ul></ul><ul><ul><li>Reduced weather related dependency </li></ul></ul><ul><li>ECONOMIC BENEFITS </li></ul><ul><ul><li>Local employment and economic growth in coastal communities </li></ul></ul><ul><li>FUTURE PREDICTIONS </li></ul><ul><ul><li>Industry will continue to chase three variables: higher capacity resource, proximity to load centers and efficiency of production </li></ul></ul><ul><ul><li>Ultimate goal of project economic efficiency </li></ul></ul>
  20. 21. THANK YOU
  21. 22. WINDFLOAT MODEL TEST OBJECTIVES <ul><ul><li>Verify numerical model and platform motion response </li></ul></ul><ul><ul><li>Determine clearance between extreme wave crest and platform deck </li></ul></ul><ul><ul><li>Measure interactions between wave-induced dynamics and tower vibrations </li></ul></ul><ul><ul><li>Measure hydrodynamic loading on the heave plate </li></ul></ul><ul><ul><li>Confirm numerical predictions of mooring line tension </li></ul></ul><ul><ul><li>Determine platform damping in pitch/roll </li></ul></ul>