Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Evolving IWRM Mukhtar Hashemi


Published on

  • very very thanks about your sildes
    Are you sure you want to  Yes  No
    Your message goes here
  • haddad moradi:
    thank you
    its grate
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

Evolving IWRM Mukhtar Hashemi

  1. 1. Evolving the Integrated Water Resources Management (IWRM) Paradigm:To reassess the underline policy assumptions<br />Part A<br />MukhtarHashemi<br />❶ Associate Researcher, The Centre for Land Use and Water Resources Research (CLUWRR), Newcastle University, UK; <br />❷ Scientific Advisor, The Office of Applied Researches, IWRMC, Ministry of Energy, Iran<br />❸ National IWRM Consultant, UNDP/GEF Conservation of Iranian Wetlands Project, Department of Environment, Iran<br />22-24 Feb 2011<br />Amman- Jordan<br />Kempinski Hotel <br />
  2. 2. A. A regional outlook <br />
  3. 3. WANA Geopolitical conditions:<br />Semi arid and Arid<br />
  4. 4. Mecca<br />Madina<br />Riyadh<br />Driving Forces: <br />Population Growth <br />Urbanization -Mega Cities<br />Tehran<br />Amman<br />Cairo <br />Damascus <br />
  5. 5. Regional disparity <br />The degree of the ability of WANA Countries to meet the 2025 urban water demand?<br />
  6. 6.
  7. 7. Results<br />7 countries with no difficulty to achieve the demand<br />include: Iran, Turkey, Lebanon, UAE, Qatar,, Kuwait and Bahrain<br />Persian Gulf states depend on desalination<br />
  8. 8. 9 countries with no difficulty but they conditionally can meet the demand<br />Yemen- no urban population driver due to poverty<br />Syria- depends on water from Turkey<br />Sudan- friction with Egypt? poverty, less demand<br />Morocco: short term problem with re allocation of water resources<br />Libya- Oil to water- desalination??<br />Iraq- water from Turkey<br />Eritrea/Ethiopia - Poverty- no demand increase<br />Egypt- if 60% share of the Nile Unchanged<br />Algeria- underdeveloped<br />Afghanistan- Poverty and under-development<br />
  9. 9. 1 country with geopolitical problems rather than resource problems<br />Palestinian – a question of Equity<br />Israel takes a lion Share<br />no urban supply infrastructure <br />
  10. 10. 4 countries with sever problems in meeting the demand<br />Tunisia- rundown of its irrigated agriculture by 50% or desalination<br />KSA-Small renewable resources and huge urban populations and there might be a need for more desalination plants and use of groundwater <br />Oman-Extensive groundwater mining not viable long term option and require desalination in the future<br />Jordan- Small renewable resource; import of water from Lebanon via Israel is a non-starter; desalination from Aquaba port is a difficult task with over 1000 m pumping requirements and 250 km of water transport; reallocation from irrigation only buys time; <br />
  11. 11. Overexploitation Zayandarud River Esfahan: Sheep or fish? <br />
  12. 12. Can you allocate any water<br />Where is Water?<br />
  13. 13. Climate Change???? Droughts??<br />What happened to the rain?<br /> (Penman, 1961)<br />
  14. 14. Basic definition: systems approach <br />
  15. 15. B. Moves towards implementing IWRM<br />Dominant paradigm- 40 years of history<br />There has been a lack in implementing IWRM worldwide despite its adoption by national governments around the globe<br />
  16. 16. Characterisation of efforts<br />Numerous researchers- variety of IWRM themes<br />Scattered and dispersed efforts <br />Lack of communication<br />World Bank (2007):<br />water scarcity in MENA (=WANA)<br />Impact of non water policies are greater<br />
  17. 17. Integration; IWRM and Sustainable development <br />Meeting the criteria for sustainability <br />Underlying theoretical background <br />
  18. 18. (Source: Morrison et al 2004)<br />
  19. 19. How to achieve holism?: sustainability criteria <br />integration, <br />spatial adequacy (basin level), <br />manageability, <br />systematic, <br />representation (participation), <br />comparability, <br />communication (precautionary), and<br />forward looking (prediction). <br />
  20. 20.
  21. 21. Policy integration useful<br />Recommendation 1: <br /><ul><li>There is a need for an integrated research policy
  22. 22. Sustainable research portfolio- appropriate funding mechanism </li></li></ul><li>The missing policy links<br />7 missing policy links which are neglected in IWRM plans<br />
  23. 23. The omissions <br />1- Green water- soil moisture and water stored in plants<br />2- Gray water and return water <br />3- Environmental services (functions) of water <br />
  24. 24. 3. Impact of land use change on blue water<br />Forest Policy based on Land and water myths (e.g. Calder 2005)<br />1 Forests increase rainfall.<br />2 Forests increase runoff.<br />3 Forests regulate flows.<br />4 Forests reduce erosion.<br />5 Forests reduce floods.<br />6 Forests ‘sterilize’ water supplies – improve water quality.<br />7 Agro forestry systems increase productivity.<br />
  25. 25. More research needed…..<br />The negative/ positive impact due<br /> biophysical interactions<br />Site specific<br />Type of plants and canopies <br />How impact? Geological factors such as landslide and jungle management activities, roads etc liter cover <br />
  26. 26. 5- Virtual water in water balance <br />(Iran)<br />
  27. 27. Water Dependency vs. Water self sufficiency <br />
  28. 28. More research: scarcity vs. Dependency<br />water scarcity water dependency <br />Iran and Pakistan water scarcity but low dependency <br />Iran 93 water self sufficiency<br />Pakistan 100 water self sufficiency <br />
  29. 29. Scarcity- dependency [source Delft, 2003)<br />
  30. 30. water footprint <br />ا<br />
  31. 31. Iran Half liter of drink beverage from sugar beet-<br />The total water footprint of 0.5 litre PET-bottle sugar-containing carbonated beverage according to the<br />type and origin of the sugar (SB=Sugar Beet, SC=Sugar Cane, HFMS= High Fructose Maize Syrup)<br />UNESCO-IHP (Ercin et al, 2009)<br />
  32. 32. UNESCO-IHP (Ercin et al, 2009)<br />
  33. 33.
  34. 34. More omissions …<br />6- fisheries sector in river basin management -neglected <br />7- role of belief systems - direct bearing on policy making decision <br />
  35. 35. Recommendation 2 <br />Redefinition of the scope or focus of IWRM<br />equitable allocation strategy include whole water balance (Blue and Green Water or so called the ‘ever-green’ revolution: Falkenmark and Rockstörm, 2006). <br />
  36. 36. Policy to acknowledge technical challenges – technology driven <br />to understand the physical processes affecting green water (e.g. vapour flow and green soil flow) and be able to include these concepts in the water balance components of the water resources models. Hence, there are many technical challenges to initiate the new green revolution. Technology will have an important role to play. It has to adjust to new paradigms and take an adaptive and innovative technical strategy. <br />
  37. 37. Recommendation 3: Redefinition of the scale of IWRM<br />A depoliticized river basin concept approach- but most decisions are political <br />Most use- Agricultural water use- smaller unit - smaller physical unit (at catchment or watershed level) can be used to reflect what happens at the farming level.<br />
  38. 38. Management at farm level <br />
  39. 39. Recommendation 4: ecohydological concept- interface among ecology, land and water <br />Redefining water science intersecting applied and socio-economic disciplines <br />Restoration/ adaptive management as part of the policy <br />
  40. 40. Recommendation 5: virtual water policy as a regional policy for cooperation <br />
  41. 41. Recommendation 6: Enhancement of the Role of belief systems and culture in policymaking <br />Policy making- straggle over idea and [values] <br />Interplay between policy and Legitimacy <br />
  42. 42. Recommendation 7: linking IWRM and ICZM- water –land-sea-interface<br />Coastal ecosystems are vital<br />60% of population<br />90% of global fisheries<br />25% global biological productivities <br />Integrated Coastal Area and river basin management- ICARM – not new but focus on new gaps….<br />
  43. 43. Science and Policy Interface:An integrated socio-technical and Institutional Framework to deal with water scarcity in WANA region<br />Part B<br />MukhtarHashemi<br />❶ Associate Researcher, The Centre for Land Use and Water Resources Research (CLUWRR), Newcastle University, UK; <br />❷ Scientific Advisor, The Office of Applied Researches, IWRMC, Ministry of Energy, Iran<br />❸ National IWRM Consultant, UNDP/GEF Conservation of Iranian Wetlands Project, Department of Environment, Iran<br />22-24 Feb 2011<br />Amman- Jordan<br />Kempinski Hotel <br />
  44. 44. Framework: Science and Water policy interface<br />Transforming Scientific evidence into policymaking<br />
  45. 45. Half full or half empty? <br />
  46. 46. Definitions <br />A Framework is a non-predictive representation of structures and provides interlinkges for the relevant components of a system that influence the policy in question.<br />theory “makes specific assumptions on the linkages between variables and outcomes” (quoting Clement 2008)<br />
  47. 47. Definitions cont.<br />a model “makes more precise predictions than a theory and often relies on mathematical tools" <br />Interface: a mechanism or framework to link two systems; be able to exchange, use or process the information<br />Perspectives are mental models of actors involved in designing , implementing and affected by policy in question<br />
  48. 48. A Science- water policy interface defines the points of interaction, interplay and linkage between technical and social or non-technical frameworks.<br />
  49. 49. Multidimensional Water scarcity<br />3 levels (World Bank, 2007)<br />Governance level: lack of transparency in decision making<br />Organisational capacity level: inability of organisations to effectively manage water resources<br />Physical resource level (water shortage, water stress conditions, temporal and seasonal variations<br />
  50. 50. Avoiding pitfalls <br />Poor definition of policy objectives<br />Lack of Local knowledge<br />Inadequate consideration of Ethics<br />Lack of clear participation mechanisms<br />Undermining learning during the process<br />Lack of economic assessment of policy<br />
  51. 51. Science and water policy interface <br />Linking sociopolitical and technical assessment frameworks<br />use of different theories and frameworks to form the a single conceptual framework<br />
  52. 52. Components <br />Conceptual frameworks: underlining policy assumption (IWRM) and dealing with cultural and ethical issues (perspectives) <br />Analytical frameworks:to study change, predict future trends, assess impacts of policies on the water resources systems and provide alternative options- integrated socio-technical assessment frameworks- institutional assessments to evaluate policy implications <br />
  53. 53. Components <br />DSSsto model the system - empirical evidences -consisting of coupled tools such as process, planning and evaluation models and tools statistical and multi-criteria decision-making (MCDA) tools.<br />stakeholder participation platform – clear policy on enabling environment - feedback mechanisms <br />
  54. 54.
  55. 55. Living with uncertainty <br />Recommendation 1 <br />
  56. 56. uncertainty is a byproduct of analyzing complex issues<br />The scientific uncertainty of any analytical assessment -limit the authority of scientific knowledge in policy making<br />The scientific ambiguity serves both policymakers and scientists: it can be used as an alibi in accounting for a lack of policy effectiveness. However this should not affect the importance of scientific knowledge in decision making as uncertainty is a byproduct of analyzing complex issues<br />
  57. 57. DSSs are not for policymakingRecommendation 2<br />
  58. 58. support the decision-making process<br />despite scepticisms and uncertainties, modelling systems have become indispensable tools in water resources management<br />Past research indicates that decision makers are becoming more dependent on scientific information (e.g. Matthies et al, 2007; Liu et al, 2008) and hence there is a quest for developing comprehensive DSSs; <br />
  59. 59. a tool to facilitate an informed, transparent and participatory decision-making process<br />certain end-users expect the so called ‘super’ software which can make decisions with a click of a button i.e. they require instantaneous answers to extremely intricate situations.<br />DSSs are not off-the-shelf software packages but they are interactive multi-stakeholder decision-making platforms. A DSS is not a tool for making-policy but it is.<br />
  60. 60. first, establishing the relationships between the dominant paradigms (e.g. IWRM) and different analytical frameworks (e.g. Institutional Analysis, DPSIR); <br />and second, linking social (policy) and scientific methodological approaches through an exchange mechanism among outputs of the frameworks used in the Decision Support tools. <br />integrated methodological framework <br />
  61. 61. An evolving IWRM<br />An IWRM approach can use scenario analysis which is embedded in the DPSIR framework. This will interface with the IA framework. The interface between science and policy can be established by looking at integrating technical and social assessment methodologies on a dynamic, interactive multi-windowed stakeholder interface platform. The IWRM paradigm will itself need to evolve to embrace emerging issues such as the management of ‘green’ water and accounting for virtual water. <br />
  62. 62. Perspectives and ethics<br />Polices to deal with water scarcity in WANA region are influenced by cultural and ethical aspects which represent a dimension of the community attributes which has to be considered in any policy analysis exercise. On the above basis, it is argued that it is vital to incorporate ethical perspectives into integrated institutional and technical frameworks for better water resources management under water scarcity<br />
  63. 63. Science and water policy interface<br />an interface between scientific knowledge systems and policy-making decisions.<br />
  64. 64. Conclusions <br />Given the complex nature of water scarcity in the WANA region, finding the science –policy interface is vital to enhance the policymaking process in the region.<br />
  65. 65. In the WANA region in which water scarcity is a fact of life, water sector institutions need to be re-oriented to cater for the needs of changing supply-demand and quantity-quality relationships in the emerging realities <br />
  66. 66. Thank you<br />Questions?<br />Water Resources Group<br />School of Civil Engineering and Geosciences, Newcastle University, UK<br />