Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on December 1, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
The first step in any data-intensive project is understanding the available data. To this end, data scientists spend a significant part of their time carrying out data quality assessments and data exploration. In spite of this being a crucial step, it usually requires repeating a series of menial tasks before the data scientist gains an understanding of the dataset and can progress to the next steps in the project.
In this talk I will present Lens (https://github.com/asidatascience/lens), a Python package which automates this drudge work, enables efficient data exploration, and kickstarts data science projects. A summary is generated for each dataset, including:
- General information about the dataset, including data quality of each of the columns;
- Distribution of each of the columns through statistics and plots (histogram, CDF, KDE), optionally grouped by other categorical variables;
- 2D distribution between pairs of columns;
- Correlation coefficient matrix for all numerical columns.
Building this tool has provided a unique view into the full Python data stack, from the parallelised analysis of a dataframe within a Dask custom execution graph, to the interactive visualisation with Jupyter widgets and Plotly. During the talk, I will also introduce how Dask works, and demonstrate how to migrate data pipelines to take advantage of its scalable capabilities.