SlideShare a Scribd company logo
1 of 43
Download to read offline
Dietary and animal factors
influencing methane production in
dairy cows and models to predict
methane formation
Pekka Huhtanen, Edward Cabezas-Garcia
and Mohamamd Ramin
Swedish University of Agricultural Sciences, Sweden
Valio Ltd, Finland
Introduction
 Methane budget
 Mechanisms of methane production
 Dietary factors
 Animal factors
 Conclusions
Global methane budget
Greenhouse gas and agriculture
 ~ 30% GHG emissions relate to agriculture and land use
 18% livestock alone (more than the transportation sector)
Globally livestock sector contributes
 9% of CO2 emissions
 37% of CH4 emissions
 65% of N2O emissions
 64% of NH3 emission
(Steinfeld et al. 2006)
CH4
CO2
Methanogens
Protozoa
H2
H2
Methane production
a microbially driven process to remove hydrogen
Feed •Reduce H+ production
•Provide alternative H+ sink
•Change microbial population
Fermentation stoichiometry
 Production and utilisation of hydrogen (H2) determines
how much methane is produced
 Carbohydrate polymers (fibre (NDF), starch, etc.) are
degraded to glucose
 Glucose (hexose = C6) is degraded to 2 pyruvate
 Pyruvate is fermented to VFA, CO2 and CH4
 C6  2 Acetate (C2) + CO2 + CH4
 C6  2 Propionate (C3) + 0.5 CO2 – 0.5 CH4
 C6  1 Butyrate (C4) + 1.5 CO2 + 0.5 CH4
Wolin equation
 Estimates production of CH4 per mole volatile fatty
acids (VFA) produced in the rumen
 CH4 (mol/mol VFA) = 0.5 * Acetate – 0.25 *
Propionate + 0.5 * Butyrate
 VFA proportions expressed as mol / mol; eg. 0.65 – 0.20 –
0.15  CH4 = 0.65 * 0.5 – 0.2 * 0.25 + 0.5 * 0.15 = 0.35
 CO2 (mmol/mol VFA) = 0.5 * Acetate + 0.25 *
Propionate + 1.5 * Butyrate
 CH4 = 0.65 * 0.5 + 0.2 * 0.25 + 1.5 * 0.15 = 0.60
Simulation from raw data by Kittelmann et al. (2014)
y = 0.053x - 4.76
R² = 0.16
y = 0.037x + 1.14
8
10
12
14
16
18
20
22
330 350 370 390 410
CH4,g/kgDMI
CH4VFA (mmol/mol)
Lin. (Observed) Lin. (Predicted)
CH4VFA = 0.5 × C2 - 0.25 × C3 + 0.5 × C4 (Wolin, 1960)
Cabezas-Garcia (2017)
Wolin equation / conclusions
 Good basis for understanding factors influencing CH4
production
 Does not take into account other H2 sinks (microbial
cells, nitrate)
 Is consistent with observed changes in VFA and CH4
when diet composition manipulated
 Feed lot diets >90% concentrates, >40% propionate of
rumen VFA and <3% CH4-Energy of GE intake
 Forage based dairy cow diets <50% concentrate DM, 17-
22% propionate and 6-7% CH4-E of GE
 Is also related to between animal variation, but
explains rather small proportion of variability
How to express methane production?
 Total production (g/d, L/d, MJ/d)
 Mainly influenced by intake
 Positively correlated to production
 Methane yield (g/kg DMI, % of GEI)
 Describes how much one unit of intake produce CH4
 Decrease as feeding level / intake increase
 Biologically more correct than total CH4
 CH4 per NDF intake biologically meaningless, since other
dietary components also produce CH4
 Methane intensity (g per unit of product; e.g. kg ECM,
kg LWG, kg carcass gain)
 Mainly influenced by production level
 Practical target to reduce CH4 per unit of product
 Especially in growing cattle Body size influence
 Life time intensity – takes into account longevity
Effects of dietary factors
on CH4 - Intake
 Feed intake is the most important factor
affecting total CH4, the effects of other
factors small but significant
 Explained 85 – 95% of variation in total CH4
production (treatment means data)
 Small R2 for individual animal data (between
animal variation, greater random error)
 Relationship between intake and CH4 not
linear; power function biologically most
relevant: CH4 = a * DMIb
Intake vs. methane yield
 Total CH4 increase with increased DMI, but
CH4 yield decrease, because of
1. Digestibility decreases due to faster passage rate
– less truly fermented carbon per unit of intake
2. Efficiency of microbial cell synthesis increases –
more carbon to cells and less to VFA and gasses
3. Microbial cells are more reduced than fermented
CHO – microbes are H2 sink
4. Small changes in rumen fermentation pattern
towards propionate
The decrease about 10% per multiple of
maintenance
Factors influencing methane yield (1)
Digestibility
 Methane yield increase per kg DMI or GEI with
improved digestibility, but reduce when expressed
per digestible energy
 Methane can only be produced from fermentable
material
 The effects of forage (grass silage) digestibility
have been conflicting
 Can be confounded by intake level, microbial efficiency and
fermentation pattern
 Nitrates in early harvested silages
 Methane intensity most likely decrease due to
increased DMI and production
Factors influencing methane yield (2)
Carbohydrates (starch, fibre, NFC)
 Within the range of dairy cow diets (<70-75%
concentrate DM) the effects are relatively small
 With high concentrate feed-lot diets much less CH4 (2-
3 vs 6-7% of GEI)
 With grass silage-based diets increased concentrate
proportion does not markedly influence rumen
fermentation: mainly increased butyrate at the expense
of reduced acetate – minor changes in propionate
 The effects of concentrate supplementation variable;
sometimes even increases in CH4 with increased
concentrates (barley): e.g. Beever et al. (1988); Moss et
al. 1994)
Factors influencing methane yield (2)
Carbohydrates (starch, fibre, NFC)
 Rather small effects within typical dairy cow diets
 Grass silage  grain: the increase in GHG during feed
production greater than decrease in CH4 (in a Danish
study greater GHG of barley compared with grass silage
was 14 g CH4 per kg DM)
 More fermentable material to faeces – increased CH4
production from manure?
 CH4 intensity can improve due to increased yield
 Sustainability? Human edible output/input decreases.
Pigs and poultry utilise grain more efficiently for
protein production with much less CH4
Factors influencing methane yield (1)
Fat
 Reduce CH4 yield
 Replace fermentable CHO, often starch, in the diet
(main factor)
 Biohydrogenation of unsaturated fatty acids; with
practical dietary fat levels minor contributor (1 mol
C18:2 (280 g) takes 4 h-atoms = 1 mol CH4 = 16 g (about
3.5-4.0% of daily CH4 from dairy cows)
 Changes in rumen fermentation pattern towards
propionate
 Grass silage-based diets rather resistant to changes
in fermentation pattern
Mitigation strategies (3)
 Additives
 Hypothesis: Influence rumen microbes
 Plant extracts: not economically feasible: effective doses
used in vitro studies impossible for dairy cows
 Monensin and other ionophores not allowed in EU
 Nitrates; effective and could be used to replace urea as N
supplement
 More expensive than urea
 If NPN not required N losses increase
 Alternative H2 acceptors (e.g. funarate)
 3-nitroxypropanol
 Has been effective (20-30% reduction) even in long term studies,
but not yet accepted
Animal factors influencing CH4
Between-cow variation in CH4
 Highly variable values for between cow
coefficient of variation (CV) in total CH4 or
CH4 yield presented
 High values usually when emissions determined
by the “Sniffer” methods
 Realistic values <12-15% CV – even less
 Our understanding of mechanisms of CH4
production do not support high between cow-
CV
On farm study (Bell et al.)
Cow breathing
0.0
0.2
0.4
0.6
0.8
1.0
0 2 4 6 8 10 12 14
Days
HeadIn(proportion)
Cow1
Cow2
Cow3
Cow4
CH4 (g/d)= 230 + 276 * HP
CO2 (kg/d) = 6.3 + 6.7 * HP
CH4
CO2
A B
C
Gas fluxes, g/d
”Flux vs Sniffer” methods
The GreenFeed System Sniffer refers to a method which
mimics gas analysers (Garnsworthy et
al. 2012)
Sniffer, No air
flow
Sniffer, No air
flow
Exp. Design Diet N
Mean
(g/d)
CV
Res.
SD
Rep1
Latin square Forage 20 405 0.09 21.8 0.72
Latin square Forage 30 421 0.08 29.3 0.53
Latin square Straw 16 419 0.12 37.3 0.60
Switch-back Concentrate 16 451 0.12 22.1 0.84
Cyclic-change over For. x Conc. 16 443 0.11 37.3 0.60
Latin square Oats 16 454 0.12 21.7 0.86
Cyclic change-over Protein 29 455 0.10 24.3 0.76
Cyclic change-over Protein 24 395 0.09 31.1 0.51
Cyclic change-over Protein 25 453 0.11 30.2 0.65
Switch-back Glycerol 22 452 0.13 27.6 0.81
“GreenFeed” studies at RBD (CH4, g/d)
1Repeatability = δ2 Cow / (δ2 Cow + δ2 Residual)
Reasons for between-CV
Rumen microbiome Animal
anatomy/physiology
Animal factors
Rumen microbiome
Intensive subject of research to relate variation in
methane production to rumen microbial population
Many statistical relationships found, but are they really
causal relationships
Large number of microbes and variables  many
significant relationships by random
Large between animal variation can be associated with
very similar end-products
“Super-bacs” may not survive in the rumen – need a
specific niche
For example, acetogenic bacteria (use H2 to produce
acetate from CO2) exist in the rumen in small numbers
Animal factors
Rumen microbiome
Sometimes abundance of different methanogens have
been associated with differences in CH4, sometimes not
 causal relationship?
It could be expected that if rumen microbiome is
involved in between animal variation in CH4, it should be
seen in rumen VFA pattern
Analysis of Kittelmann et al. data indicated that the
relationship between Wolin CH4/VFA and CH4 yield was
close to expected, but it explained only 16% of variation
in observed CH4
These data included selected low and high emitters, i.e. variability
likely to be greater than in “unselected” population
Cabezas-Garcia et al. (2017) J. Dairy Sci.
Cabezas-Garcia et al. (2017) J. Dairy Sci.
Overall (including diet, animal and period) CV 4.3% - with diets based on grass
silage differences in rumen fermentation pattern play only minor role in
Variation of CH4
VFA’s molar % vs concentrations
0,011
0,025
0,051
0,046
0,062
0,098
0,000
0,020
0,040
0,060
0,080
0,100
0,120
Acetate Propionate Butyrate
Between-cowCV
mmol/mol mmol/L
Repeatability = δ2 Cow / (δ2 Cow + δ2 Residual)
Molar proportions
Acetate = 0.28
Propionate = 0.06
Butyrate = 0.23
Concentrations
Acetate = 0.46
Propionate = 0.33
Butyrate = 0.55
Repeatability
Variance components (II)
Item
NDF pool iNDF-kp
(g/kg BW) (1/h )
Mean 19.4 0.023
CV
Total 0.255 0.242
Diet 0.088 0.086
Cow 0.130 0.090
Repeatability1
0.72 0.39
1Repeatability = δ2 Cow / (δ2 Cow + δ2 Residual)
Animal factors
 Much more variability in variables related to
animal physiology than rumen microbiome
 Repeatability higher for physiological variables
 E.g. higher CV and rep for rumen VFA concentrations
than molar proportions (passage rate, rumen volume,
absorption rate)
 Variation in physiological variables analogous to
intake effects
 Passage rate increases
 Digestibility decreases with increased passage rate
 Microbial efficiency increases with passage rate
 Fermentation pattern change (minor) with passage
rate
Methane and Digestibility
 Digestibility (D) is a function of digestion rate (kd)
and passage rate (kp)
 D = kd / (kd + kp)
 Digestion rate is a feed (NOT ANIMAL) character 
it is impossible to reduce CH4 and maintain (or improve
digestibility) by selecting low emitters (not the same
as e.g. production and fertility
 Reduced D  more fermentable substrate to manure
 more CH4 from manure
Methane vs. digestibility
High Low High Low
   In vivo
Goopy et al 66.4 64.8 23.5 20.8 0.6
Pinares‐Patino et al.  Pasture 62.9 59.5 24.6 21.7 1.2
Pinares Pellet 63.4 58.1 10.8 6.4 1.2
   Modelling
Huhtanen Cow 75.8 71.5 24.4 20.4 1.1
Sheep 77.3 73.1 29.2 25.0 1.0
Methane, g/kg DMDigestibility, %
 Cellulose digestibility vs. CH4 yield (r = 0.66)
 NDF digestibility vs CH4 yield (r = 0.74)
 Passage rate vs. Digestibility (r = - 0.78)
 Energy loss per 1 g/kd DMI in CH4 (0.185 MJ) is
greater than gain from reduced CH4 (0.055 MJ)
Adapted individual cow data by Shiemman et al. (1971)
y = 25.8x - 11.1
R² = 0.81
y = 37.5x - 19.0
R² = 0.85
5,0
6,0
7,0
8,0
9,0
10,0
11,0
12,0
0,68 0,70 0,72 0,74 0,76 0,78 0,80 0,82
CH4/GEI,%
GE Digestibility, g/kg
Lin. (Lactation)
Lin. (Maintenance)
Huhtanen et al. 2016; Anim.
Prod Sci
10 g/kg decrease in OMD decreased
CH4 yield by 0.9-1.0 g/kg DM
1 h increase in MRT 0.33 – 0.37 g/kg DM
increase in CH4 yield
Importance of CH4 energy
 Johnson & Johnson (1995) reported a range from 2 to
12% in CH4-energy of GEI
 This represents the whole range between intake levels
(maintenance vs. ad libitum) and diet composition (highly digestible
diet at low intake (12) vs. feedlot diet ad libitum (2)
 Within practical dairy cow diets between-cow CV about 10%
 Mean CH4 = 6.5% of GEI
 GEI = 400 MJ/d (21-22 kg DM)
 CH4 = 0.065 * 400 = 26 MJ/d
 20% reduction = 0.2 * 24 MJ = 5.2 MJ
 ME requirement of 1 kg ECM = 5.2 MJ  potential for 1.0 kg ECM
 At zero ME balance partitioning of incremental ME about 50:50
between body tissues and mammary gland  0.5 * 1.0 = 0.5 kg ECM
 Rather small potential to increase ME intake
Conclusions
1. Potential to reduce CH4 in our condition rather
limited
1. High forage quality + moderate amounts of
concentrates + optimal protein
2. Economically optimal level of fat (e.g. replacement
of barley/wheat with oats)
2. Increased longevity – less CH4 from replacement
3. Selection for improved feed efficiency  less CH4
per unit of product (no need to measure CH4)
4. We need to be careful in selection programs to avoid
reducing diet, especially cell wall digestibility –
ruminants’ special character (and niche) in human
food production
5. The whole system (feed production – animal –
manure) should be taken into accounr

More Related Content

What's hot

Manufacture & Pet Food Labels
Manufacture & Pet Food LabelsManufacture & Pet Food Labels
Manufacture & Pet Food LabelsSUNY Ulster
 
3. Feedworks Axtra PHY GOLD, FINAL.pptx
3. Feedworks Axtra PHY GOLD, FINAL.pptx3. Feedworks Axtra PHY GOLD, FINAL.pptx
3. Feedworks Axtra PHY GOLD, FINAL.pptx2damcreative
 
DEVELOPMENT OF RUMEN.pptx
DEVELOPMENT OF RUMEN.pptxDEVELOPMENT OF RUMEN.pptx
DEVELOPMENT OF RUMEN.pptxsherozJutt6
 
Functional development of rumen
Functional development of rumenFunctional development of rumen
Functional development of rumenR.s. Suthar
 
Specifications of feed ingredients and finished feeds, and bis standards
Specifications of feed ingredients and finished feeds, and bis standardsSpecifications of feed ingredients and finished feeds, and bis standards
Specifications of feed ingredients and finished feeds, and bis standardsDr.Balakesava Reddy
 
Climate smart livestock interventions
Climate smart livestock interventionsClimate smart livestock interventions
Climate smart livestock interventionsILRI
 
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...Protein digestion in poultry – the value of an exogenous protease- A Cowieson...
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...DSM Animal Nutrition & Health
 
Cattle Feeding Practices
Cattle Feeding PracticesCattle Feeding Practices
Cattle Feeding PracticeseAfghanAg
 
Animal nutrition
Animal nutritionAnimal nutrition
Animal nutritionfrit0087
 
feeding management og high yielding buffaloes
feeding management og high yielding buffaloesfeeding management og high yielding buffaloes
feeding management og high yielding buffaloesAnuj2011v8b
 

What's hot (20)

Manufacture & Pet Food Labels
Manufacture & Pet Food LabelsManufacture & Pet Food Labels
Manufacture & Pet Food Labels
 
3. Feedworks Axtra PHY GOLD, FINAL.pptx
3. Feedworks Axtra PHY GOLD, FINAL.pptx3. Feedworks Axtra PHY GOLD, FINAL.pptx
3. Feedworks Axtra PHY GOLD, FINAL.pptx
 
DEVELOPMENT OF RUMEN.pptx
DEVELOPMENT OF RUMEN.pptxDEVELOPMENT OF RUMEN.pptx
DEVELOPMENT OF RUMEN.pptx
 
Prebiotics in poultry
Prebiotics in poultryPrebiotics in poultry
Prebiotics in poultry
 
Functional development of rumen
Functional development of rumenFunctional development of rumen
Functional development of rumen
 
Specifications of feed ingredients and finished feeds, and bis standards
Specifications of feed ingredients and finished feeds, and bis standardsSpecifications of feed ingredients and finished feeds, and bis standards
Specifications of feed ingredients and finished feeds, and bis standards
 
Precision feeding in livestock
Precision feeding in livestockPrecision feeding in livestock
Precision feeding in livestock
 
Exogenous enzymes in ruminant feed
Exogenous enzymes in ruminant feedExogenous enzymes in ruminant feed
Exogenous enzymes in ruminant feed
 
Analysis of milk
Analysis of milkAnalysis of milk
Analysis of milk
 
Functional meat products.pptx1
Functional meat products.pptx1Functional meat products.pptx1
Functional meat products.pptx1
 
PHYTOGENIC FEED ADDITIVES
PHYTOGENIC FEED ADDITIVESPHYTOGENIC FEED ADDITIVES
PHYTOGENIC FEED ADDITIVES
 
Feed additives
Feed additives Feed additives
Feed additives
 
Climate smart livestock interventions
Climate smart livestock interventionsClimate smart livestock interventions
Climate smart livestock interventions
 
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...Protein digestion in poultry – the value of an exogenous protease- A Cowieson...
Protein digestion in poultry – the value of an exogenous protease- A Cowieson...
 
Concept of bypass protein
Concept of bypass proteinConcept of bypass protein
Concept of bypass protein
 
Urea treatment
Urea treatmentUrea treatment
Urea treatment
 
Cattle Feeding Practices
Cattle Feeding PracticesCattle Feeding Practices
Cattle Feeding Practices
 
Extrusion processing for feed
Extrusion processing for feed Extrusion processing for feed
Extrusion processing for feed
 
Animal nutrition
Animal nutritionAnimal nutrition
Animal nutrition
 
feeding management og high yielding buffaloes
feeding management og high yielding buffaloesfeeding management og high yielding buffaloes
feeding management og high yielding buffaloes
 

Similar to Pekka Huhtanen, SLU: Dietary and animal factors influencing methane production in dairy cows and models to predict methane formation

Alireza Bayat, Luke: Feeding alternatives to reduce methane emissions
Alireza Bayat, Luke: Feeding alternatives to reduce methane emissionsAlireza Bayat, Luke: Feeding alternatives to reduce methane emissions
Alireza Bayat, Luke: Feeding alternatives to reduce methane emissionsValio
 
Gary Lanigan | Agricultural Greenhouse Gases – Emissions Intensity, Key Uncer...
Gary Lanigan | Agricultural Greenhouse Gases – Emissions Intensity, Key Uncer...Gary Lanigan | Agricultural Greenhouse Gases – Emissions Intensity, Key Uncer...
Gary Lanigan | Agricultural Greenhouse Gases – Emissions Intensity, Key Uncer...icarb
 
Livestock and Climate Change - Tara Garnett, Food Climate Research Network, U...
Livestock and Climate Change - Tara Garnett, Food Climate Research Network, U...Livestock and Climate Change - Tara Garnett, Food Climate Research Network, U...
Livestock and Climate Change - Tara Garnett, Food Climate Research Network, U...guycollender
 
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...Farming Futures
 
Nitrogen co-benefits and trade-offs of novel CH4 mitigation measures applied ...
Nitrogen co-benefits and trade-offs of novel CH4 mitigation measures applied ...Nitrogen co-benefits and trade-offs of novel CH4 mitigation measures applied ...
Nitrogen co-benefits and trade-offs of novel CH4 mitigation measures applied ...REMEDIAnetwork
 
Hannah Rigby - Imperial College London, United Kingdom - The potential transf...
Hannah Rigby - Imperial College London, United Kingdom - The potential transf...Hannah Rigby - Imperial College London, United Kingdom - The potential transf...
Hannah Rigby - Imperial College London, United Kingdom - The potential transf...European Sustainable Phosphorus Platform
 
Improving the sustainability of livestock systems in Ireland
Improving the sustainability of livestock systems in IrelandImproving the sustainability of livestock systems in Ireland
Improving the sustainability of livestock systems in IrelandIrishFarmers
 
Modelling the impact on GHG emissions of using underutilized feed resources i...
Modelling the impact on GHG emissions of using underutilized feed resources i...Modelling the impact on GHG emissions of using underutilized feed resources i...
Modelling the impact on GHG emissions of using underutilized feed resources i...BC3 - Basque Center for Climate Change
 
Sponsor Day on animal feeding: Ruminants and sustainability: The main improve...
Sponsor Day on animal feeding: Ruminants and sustainability: The main improve...Sponsor Day on animal feeding: Ruminants and sustainability: The main improve...
Sponsor Day on animal feeding: Ruminants and sustainability: The main improve...Irta
 
Dr. Gregory Thoma - Pork’s Carbon Footprint
Dr. Gregory Thoma - Pork’s Carbon FootprintDr. Gregory Thoma - Pork’s Carbon Footprint
Dr. Gregory Thoma - Pork’s Carbon FootprintJohn Blue
 
Reduction of GHG emissions by reduced livestock production resulting from die...
Reduction of GHG emissions by reduced livestock production resulting from die...Reduction of GHG emissions by reduced livestock production resulting from die...
Reduction of GHG emissions by reduced livestock production resulting from die...Jan Peter Lesschen
 
Livestock production, climate change and mitigation strategies
Livestock production, climate change and mitigation strategiesLivestock production, climate change and mitigation strategies
Livestock production, climate change and mitigation strategiesDr. Ishwor Dhakal
 
Applications of in vitro gas production technique. Avijit Dey. 4th June.2014
Applications of in vitro gas production technique. Avijit Dey. 4th June.2014Applications of in vitro gas production technique. Avijit Dey. 4th June.2014
Applications of in vitro gas production technique. Avijit Dey. 4th June.2014avijitcirb
 
Impact of Cow Milk Production from Latin America on Greenhouse Gas Emissions
Impact of Cow Milk Production from Latin America on Greenhouse Gas EmissionsImpact of Cow Milk Production from Latin America on Greenhouse Gas Emissions
Impact of Cow Milk Production from Latin America on Greenhouse Gas EmissionsQUESTJOURNAL
 
The Science of Farm Emissions
The Science of Farm EmissionsThe Science of Farm Emissions
The Science of Farm EmissionsCarbon Coalition
 
Presentation on a novel accelerated composting process.
Presentation on a novel accelerated composting process.Presentation on a novel accelerated composting process.
Presentation on a novel accelerated composting process.Kiran Parmar
 
Climate Change Mitigation and Adaptation in Dairy Production Systems of the G...
Climate Change Mitigation and Adaptation in Dairy Production Systems of the G...Climate Change Mitigation and Adaptation in Dairy Production Systems of the G...
Climate Change Mitigation and Adaptation in Dairy Production Systems of the G...National Institute of Food and Agriculture
 

Similar to Pekka Huhtanen, SLU: Dietary and animal factors influencing methane production in dairy cows and models to predict methane formation (20)

Application of a Tier 3 for enteric methane in dairy catlle_Bannink
Application of a Tier 3 for enteric methane in dairy catlle_BanninkApplication of a Tier 3 for enteric methane in dairy catlle_Bannink
Application of a Tier 3 for enteric methane in dairy catlle_Bannink
 
Alireza Bayat, Luke: Feeding alternatives to reduce methane emissions
Alireza Bayat, Luke: Feeding alternatives to reduce methane emissionsAlireza Bayat, Luke: Feeding alternatives to reduce methane emissions
Alireza Bayat, Luke: Feeding alternatives to reduce methane emissions
 
Gary Lanigan | Agricultural Greenhouse Gases – Emissions Intensity, Key Uncer...
Gary Lanigan | Agricultural Greenhouse Gases – Emissions Intensity, Key Uncer...Gary Lanigan | Agricultural Greenhouse Gases – Emissions Intensity, Key Uncer...
Gary Lanigan | Agricultural Greenhouse Gases – Emissions Intensity, Key Uncer...
 
Livestock and Climate Change - Tara Garnett, Food Climate Research Network, U...
Livestock and Climate Change - Tara Garnett, Food Climate Research Network, U...Livestock and Climate Change - Tara Garnett, Food Climate Research Network, U...
Livestock and Climate Change - Tara Garnett, Food Climate Research Network, U...
 
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...
 
Nitrogen co-benefits and trade-offs of novel CH4 mitigation measures applied ...
Nitrogen co-benefits and trade-offs of novel CH4 mitigation measures applied ...Nitrogen co-benefits and trade-offs of novel CH4 mitigation measures applied ...
Nitrogen co-benefits and trade-offs of novel CH4 mitigation measures applied ...
 
Hannah Rigby - Imperial College London, United Kingdom - The potential transf...
Hannah Rigby - Imperial College London, United Kingdom - The potential transf...Hannah Rigby - Imperial College London, United Kingdom - The potential transf...
Hannah Rigby - Imperial College London, United Kingdom - The potential transf...
 
Improving the sustainability of livestock systems in Ireland
Improving the sustainability of livestock systems in IrelandImproving the sustainability of livestock systems in Ireland
Improving the sustainability of livestock systems in Ireland
 
Modelling the impact on GHG emissions of using underutilized feed resources i...
Modelling the impact on GHG emissions of using underutilized feed resources i...Modelling the impact on GHG emissions of using underutilized feed resources i...
Modelling the impact on GHG emissions of using underutilized feed resources i...
 
Final results - Life Beef Carbon
Final results - Life Beef CarbonFinal results - Life Beef Carbon
Final results - Life Beef Carbon
 
Sponsor Day on animal feeding: Ruminants and sustainability: The main improve...
Sponsor Day on animal feeding: Ruminants and sustainability: The main improve...Sponsor Day on animal feeding: Ruminants and sustainability: The main improve...
Sponsor Day on animal feeding: Ruminants and sustainability: The main improve...
 
Dr. Gregory Thoma - Pork’s Carbon Footprint
Dr. Gregory Thoma - Pork’s Carbon FootprintDr. Gregory Thoma - Pork’s Carbon Footprint
Dr. Gregory Thoma - Pork’s Carbon Footprint
 
Reduction of GHG emissions by reduced livestock production resulting from die...
Reduction of GHG emissions by reduced livestock production resulting from die...Reduction of GHG emissions by reduced livestock production resulting from die...
Reduction of GHG emissions by reduced livestock production resulting from die...
 
Livestock production, climate change and mitigation strategies
Livestock production, climate change and mitigation strategiesLivestock production, climate change and mitigation strategies
Livestock production, climate change and mitigation strategies
 
Applications of in vitro gas production technique. Avijit Dey. 4th June.2014
Applications of in vitro gas production technique. Avijit Dey. 4th June.2014Applications of in vitro gas production technique. Avijit Dey. 4th June.2014
Applications of in vitro gas production technique. Avijit Dey. 4th June.2014
 
Mourakohman w2w 2013
Mourakohman w2w 2013Mourakohman w2w 2013
Mourakohman w2w 2013
 
Impact of Cow Milk Production from Latin America on Greenhouse Gas Emissions
Impact of Cow Milk Production from Latin America on Greenhouse Gas EmissionsImpact of Cow Milk Production from Latin America on Greenhouse Gas Emissions
Impact of Cow Milk Production from Latin America on Greenhouse Gas Emissions
 
The Science of Farm Emissions
The Science of Farm EmissionsThe Science of Farm Emissions
The Science of Farm Emissions
 
Presentation on a novel accelerated composting process.
Presentation on a novel accelerated composting process.Presentation on a novel accelerated composting process.
Presentation on a novel accelerated composting process.
 
Climate Change Mitigation and Adaptation in Dairy Production Systems of the G...
Climate Change Mitigation and Adaptation in Dairy Production Systems of the G...Climate Change Mitigation and Adaptation in Dairy Production Systems of the G...
Climate Change Mitigation and Adaptation in Dairy Production Systems of the G...
 

More from Valio

Ilma Tapio, LukeFunctional role of rumen microbiome linked to methane product...
Ilma Tapio, LukeFunctional role of rumen microbiome linked to methane product...Ilma Tapio, LukeFunctional role of rumen microbiome linked to methane product...
Ilma Tapio, LukeFunctional role of rumen microbiome linked to methane product...Valio
 
Enyew Negussie, Luke: Methane emission from Ruminants: what genetics and can do?
Enyew Negussie, Luke: Methane emission from Ruminants: what genetics and can do?Enyew Negussie, Luke: Methane emission from Ruminants: what genetics and can do?
Enyew Negussie, Luke: Methane emission from Ruminants: what genetics and can do?Valio
 
MethaneHACK launching
MethaneHACK launchingMethaneHACK launching
MethaneHACK launchingValio
 
Anu Kaukovirta‐Norja, Valio and Johanna Buchert, Luke: Valio methane seminar ...
Anu Kaukovirta‐Norja, Valio and Johanna Buchert, Luke: Valio methane seminar ...Anu Kaukovirta‐Norja, Valio and Johanna Buchert, Luke: Valio methane seminar ...
Anu Kaukovirta‐Norja, Valio and Johanna Buchert, Luke: Valio methane seminar ...Valio
 
Sami Siikanen, VTT: Using gas finder infrared camera in detecting landfill me...
Sami Siikanen, VTT: Using gas finder infrared camera in detecting landfill me...Sami Siikanen, VTT: Using gas finder infrared camera in detecting landfill me...
Sami Siikanen, VTT: Using gas finder infrared camera in detecting landfill me...Valio
 
Juha‐Pekka Pitkänen, VTT: Conversion of methane through gas fermentation to v...
Juha‐Pekka Pitkänen, VTT: Conversion of methane through gas fermentation to v...Juha‐Pekka Pitkänen, VTT: Conversion of methane through gas fermentation to v...
Juha‐Pekka Pitkänen, VTT: Conversion of methane through gas fermentation to v...Valio
 
Juha Nousiainen, Valio: Strategies to improve resource and climate efficiency...
Juha Nousiainen, Valio: Strategies to improve resource and climate efficiency...Juha Nousiainen, Valio: Strategies to improve resource and climate efficiency...
Juha Nousiainen, Valio: Strategies to improve resource and climate efficiency...Valio
 
Sari Luostarinen, Luke: Manure management and emission control
Sari Luostarinen, Luke: Manure management and emission control Sari Luostarinen, Luke: Manure management and emission control
Sari Luostarinen, Luke: Manure management and emission control Valio
 
Kovakaan data ei korvaa intuitiota – tiedon ja tunteen liitto markkinoinnin j...
Kovakaan data ei korvaa intuitiota – tiedon ja tunteen liitto markkinoinnin j...Kovakaan data ei korvaa intuitiota – tiedon ja tunteen liitto markkinoinnin j...
Kovakaan data ei korvaa intuitiota – tiedon ja tunteen liitto markkinoinnin j...Valio
 
Why is the gut our second brain? Robert-J M Brummer
Why is the gut our second brain? Robert-J M BrummerWhy is the gut our second brain? Robert-J M Brummer
Why is the gut our second brain? Robert-J M BrummerValio
 
Johanna mäkelä: Maku ja muuttuva Ruokakulttuuri
Johanna mäkelä: Maku ja muuttuva RuokakulttuuriJohanna mäkelä: Maku ja muuttuva Ruokakulttuuri
Johanna mäkelä: Maku ja muuttuva RuokakulttuuriValio
 
Hyvinvointi tuotekehityksen ohjenuorana
Hyvinvointi tuotekehityksen ohjenuoranaHyvinvointi tuotekehityksen ohjenuorana
Hyvinvointi tuotekehityksen ohjenuoranaValio
 
Tuomas Salusjärvi - Innovaatio, jonka voi syödä
Tuomas Salusjärvi - Innovaatio, jonka voi syödäTuomas Salusjärvi - Innovaatio, jonka voi syödä
Tuomas Salusjärvi - Innovaatio, jonka voi syödäValio
 
Täytyykö aikuisen juoda maitoa?
Täytyykö aikuisen juoda maitoa?Täytyykö aikuisen juoda maitoa?
Täytyykö aikuisen juoda maitoa?Valio
 
Voiko luontoa parantaa? Maitoteknologian mahdollisuudet
Voiko luontoa parantaa? Maitoteknologian mahdollisuudetVoiko luontoa parantaa? Maitoteknologian mahdollisuudet
Voiko luontoa parantaa? Maitoteknologian mahdollisuudetValio
 
Seuraavatkin 110 vuotta kansainvälisillä maitomarkkinoilla
Seuraavatkin 110 vuotta kansainvälisillä maitomarkkinoillaSeuraavatkin 110 vuotta kansainvälisillä maitomarkkinoilla
Seuraavatkin 110 vuotta kansainvälisillä maitomarkkinoillaValio
 
10 vinkkiä ikääntyvän ravitsemukseen - Valion ravitsemusluento
10 vinkkiä ikääntyvän ravitsemukseen - Valion ravitsemusluento10 vinkkiä ikääntyvän ravitsemukseen - Valion ravitsemusluento
10 vinkkiä ikääntyvän ravitsemukseen - Valion ravitsemusluentoValio
 
Hyvä ravitsemus lapselle - Valion ravitsemusluento
Hyvä ravitsemus lapselle - Valion ravitsemusluentoHyvä ravitsemus lapselle - Valion ravitsemusluento
Hyvä ravitsemus lapselle - Valion ravitsemusluentoValio
 
Siilotilasäiliöt ja maitohuoneratkaisut
Siilotilasäiliöt ja maitohuoneratkaisutSiilotilasäiliöt ja maitohuoneratkaisut
Siilotilasäiliöt ja maitohuoneratkaisutValio
 
Pikakatsaus maitomarkkinoihin
Pikakatsaus maitomarkkinoihinPikakatsaus maitomarkkinoihin
Pikakatsaus maitomarkkinoihinValio
 

More from Valio (20)

Ilma Tapio, LukeFunctional role of rumen microbiome linked to methane product...
Ilma Tapio, LukeFunctional role of rumen microbiome linked to methane product...Ilma Tapio, LukeFunctional role of rumen microbiome linked to methane product...
Ilma Tapio, LukeFunctional role of rumen microbiome linked to methane product...
 
Enyew Negussie, Luke: Methane emission from Ruminants: what genetics and can do?
Enyew Negussie, Luke: Methane emission from Ruminants: what genetics and can do?Enyew Negussie, Luke: Methane emission from Ruminants: what genetics and can do?
Enyew Negussie, Luke: Methane emission from Ruminants: what genetics and can do?
 
MethaneHACK launching
MethaneHACK launchingMethaneHACK launching
MethaneHACK launching
 
Anu Kaukovirta‐Norja, Valio and Johanna Buchert, Luke: Valio methane seminar ...
Anu Kaukovirta‐Norja, Valio and Johanna Buchert, Luke: Valio methane seminar ...Anu Kaukovirta‐Norja, Valio and Johanna Buchert, Luke: Valio methane seminar ...
Anu Kaukovirta‐Norja, Valio and Johanna Buchert, Luke: Valio methane seminar ...
 
Sami Siikanen, VTT: Using gas finder infrared camera in detecting landfill me...
Sami Siikanen, VTT: Using gas finder infrared camera in detecting landfill me...Sami Siikanen, VTT: Using gas finder infrared camera in detecting landfill me...
Sami Siikanen, VTT: Using gas finder infrared camera in detecting landfill me...
 
Juha‐Pekka Pitkänen, VTT: Conversion of methane through gas fermentation to v...
Juha‐Pekka Pitkänen, VTT: Conversion of methane through gas fermentation to v...Juha‐Pekka Pitkänen, VTT: Conversion of methane through gas fermentation to v...
Juha‐Pekka Pitkänen, VTT: Conversion of methane through gas fermentation to v...
 
Juha Nousiainen, Valio: Strategies to improve resource and climate efficiency...
Juha Nousiainen, Valio: Strategies to improve resource and climate efficiency...Juha Nousiainen, Valio: Strategies to improve resource and climate efficiency...
Juha Nousiainen, Valio: Strategies to improve resource and climate efficiency...
 
Sari Luostarinen, Luke: Manure management and emission control
Sari Luostarinen, Luke: Manure management and emission control Sari Luostarinen, Luke: Manure management and emission control
Sari Luostarinen, Luke: Manure management and emission control
 
Kovakaan data ei korvaa intuitiota – tiedon ja tunteen liitto markkinoinnin j...
Kovakaan data ei korvaa intuitiota – tiedon ja tunteen liitto markkinoinnin j...Kovakaan data ei korvaa intuitiota – tiedon ja tunteen liitto markkinoinnin j...
Kovakaan data ei korvaa intuitiota – tiedon ja tunteen liitto markkinoinnin j...
 
Why is the gut our second brain? Robert-J M Brummer
Why is the gut our second brain? Robert-J M BrummerWhy is the gut our second brain? Robert-J M Brummer
Why is the gut our second brain? Robert-J M Brummer
 
Johanna mäkelä: Maku ja muuttuva Ruokakulttuuri
Johanna mäkelä: Maku ja muuttuva RuokakulttuuriJohanna mäkelä: Maku ja muuttuva Ruokakulttuuri
Johanna mäkelä: Maku ja muuttuva Ruokakulttuuri
 
Hyvinvointi tuotekehityksen ohjenuorana
Hyvinvointi tuotekehityksen ohjenuoranaHyvinvointi tuotekehityksen ohjenuorana
Hyvinvointi tuotekehityksen ohjenuorana
 
Tuomas Salusjärvi - Innovaatio, jonka voi syödä
Tuomas Salusjärvi - Innovaatio, jonka voi syödäTuomas Salusjärvi - Innovaatio, jonka voi syödä
Tuomas Salusjärvi - Innovaatio, jonka voi syödä
 
Täytyykö aikuisen juoda maitoa?
Täytyykö aikuisen juoda maitoa?Täytyykö aikuisen juoda maitoa?
Täytyykö aikuisen juoda maitoa?
 
Voiko luontoa parantaa? Maitoteknologian mahdollisuudet
Voiko luontoa parantaa? Maitoteknologian mahdollisuudetVoiko luontoa parantaa? Maitoteknologian mahdollisuudet
Voiko luontoa parantaa? Maitoteknologian mahdollisuudet
 
Seuraavatkin 110 vuotta kansainvälisillä maitomarkkinoilla
Seuraavatkin 110 vuotta kansainvälisillä maitomarkkinoillaSeuraavatkin 110 vuotta kansainvälisillä maitomarkkinoilla
Seuraavatkin 110 vuotta kansainvälisillä maitomarkkinoilla
 
10 vinkkiä ikääntyvän ravitsemukseen - Valion ravitsemusluento
10 vinkkiä ikääntyvän ravitsemukseen - Valion ravitsemusluento10 vinkkiä ikääntyvän ravitsemukseen - Valion ravitsemusluento
10 vinkkiä ikääntyvän ravitsemukseen - Valion ravitsemusluento
 
Hyvä ravitsemus lapselle - Valion ravitsemusluento
Hyvä ravitsemus lapselle - Valion ravitsemusluentoHyvä ravitsemus lapselle - Valion ravitsemusluento
Hyvä ravitsemus lapselle - Valion ravitsemusluento
 
Siilotilasäiliöt ja maitohuoneratkaisut
Siilotilasäiliöt ja maitohuoneratkaisutSiilotilasäiliöt ja maitohuoneratkaisut
Siilotilasäiliöt ja maitohuoneratkaisut
 
Pikakatsaus maitomarkkinoihin
Pikakatsaus maitomarkkinoihinPikakatsaus maitomarkkinoihin
Pikakatsaus maitomarkkinoihin
 

Recently uploaded

CCXG global forum, April 2024, Delio Rincon
CCXG global forum, April 2024,  Delio RinconCCXG global forum, April 2024,  Delio Rincon
CCXG global forum, April 2024, Delio RinconOECD Environment
 
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...Amil baba
 
Title-Role of forestry in restoration of degraded lands.pptx
Title-Role of forestry in restoration of degraded lands.pptxTitle-Role of forestry in restoration of degraded lands.pptx
Title-Role of forestry in restoration of degraded lands.pptxSagar Chaudhary
 
CCXG global forum, April 2024, Raphaël Jachnik
CCXG global forum, April 2024, Raphaël JachnikCCXG global forum, April 2024, Raphaël Jachnik
CCXG global forum, April 2024, Raphaël JachnikOECD Environment
 
CCXG global forum, April 2024, Niklas Höhne
CCXG global forum, April 2024,  Niklas HöhneCCXG global forum, April 2024,  Niklas Höhne
CCXG global forum, April 2024, Niklas HöhneOECD Environment
 
CCXG global forum, April 2024, Nino Tkhilava
CCXG global forum, April 2024,  Nino TkhilavaCCXG global forum, April 2024,  Nino Tkhilava
CCXG global forum, April 2024, Nino TkhilavaOECD Environment
 
LCCXG global forum, April 2024, Lydie-Line Paroz
LCCXG global forum, April 2024,  Lydie-Line ParozLCCXG global forum, April 2024,  Lydie-Line Paroz
LCCXG global forum, April 2024, Lydie-Line ParozOECD Environment
 
Little Green Ranger ESG Sustainability Report
Little Green Ranger ESG Sustainability ReportLittle Green Ranger ESG Sustainability Report
Little Green Ranger ESG Sustainability ReportKennethOng48
 
CCXG global forum, April 2024, Beatrice Cyiza
CCXG global forum, April 2024,  Beatrice CyizaCCXG global forum, April 2024,  Beatrice Cyiza
CCXG global forum, April 2024, Beatrice CyizaOECD Environment
 
7. PD 705 & RELEVANT FORESTRY LAWS PHILIPPINES
7. PD 705 & RELEVANT FORESTRY LAWS PHILIPPINES7. PD 705 & RELEVANT FORESTRY LAWS PHILIPPINES
7. PD 705 & RELEVANT FORESTRY LAWS PHILIPPINESMarlonJayBayag
 
CCXG global forum, April 2024, Sirini Jeudy-Hugo
CCXG global forum, April 2024,  Sirini Jeudy-HugoCCXG global forum, April 2024,  Sirini Jeudy-Hugo
CCXG global forum, April 2024, Sirini Jeudy-HugoOECD Environment
 
CCXG global forum, April 2024, Geraldine Ang
CCXG global forum, April 2024, Geraldine AngCCXG global forum, April 2024, Geraldine Ang
CCXG global forum, April 2024, Geraldine AngOECD Environment
 
Get inspired by SYMBA Project: promoting Industrial Symbiosis
Get inspired by SYMBA Project: promoting Industrial SymbiosisGet inspired by SYMBA Project: promoting Industrial Symbiosis
Get inspired by SYMBA Project: promoting Industrial Symbiosissymbaprojecteu
 
CCXG global forum, April 2024, Surabi Menon
CCXG global forum, April 2024, Surabi MenonCCXG global forum, April 2024, Surabi Menon
CCXG global forum, April 2024, Surabi MenonOECD Environment
 
CCXG global forum, April 2024, MJ Mace
CCXG global forum, April 2024,   MJ MaceCCXG global forum, April 2024,   MJ Mace
CCXG global forum, April 2024, MJ MaceOECD Environment
 
CCXG global forum, April 2024, Alban Kitous
CCXG global forum, April 2024,  Alban KitousCCXG global forum, April 2024,  Alban Kitous
CCXG global forum, April 2024, Alban KitousOECD Environment
 
https://www.facebook.com/people/Proper-Keto-Capsules-UK/61557989683758/
https://www.facebook.com/people/Proper-Keto-Capsules-UK/61557989683758/https://www.facebook.com/people/Proper-Keto-Capsules-UK/61557989683758/
https://www.facebook.com/people/Proper-Keto-Capsules-UK/61557989683758/dikjog
 
CCXG global forum, April 2024, David Mutisya
CCXG global forum, April 2024,  David MutisyaCCXG global forum, April 2024,  David Mutisya
CCXG global forum, April 2024, David MutisyaOECD Environment
 
CCXG global forum, April 2024, XU Huaqing
CCXG global forum, April 2024,  XU HuaqingCCXG global forum, April 2024,  XU Huaqing
CCXG global forum, April 2024, XU HuaqingOECD Environment
 

Recently uploaded (20)

CCXG global forum, April 2024, Delio Rincon
CCXG global forum, April 2024,  Delio RinconCCXG global forum, April 2024,  Delio Rincon
CCXG global forum, April 2024, Delio Rincon
 
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...
Uae-NO1 Black Magic Specialist Expert In Bahawalpur, Sargodha, Sialkot, Sheik...
 
Title-Role of forestry in restoration of degraded lands.pptx
Title-Role of forestry in restoration of degraded lands.pptxTitle-Role of forestry in restoration of degraded lands.pptx
Title-Role of forestry in restoration of degraded lands.pptx
 
CCXG global forum, April 2024, Raphaël Jachnik
CCXG global forum, April 2024, Raphaël JachnikCCXG global forum, April 2024, Raphaël Jachnik
CCXG global forum, April 2024, Raphaël Jachnik
 
CCXG global forum, April 2024, Niklas Höhne
CCXG global forum, April 2024,  Niklas HöhneCCXG global forum, April 2024,  Niklas Höhne
CCXG global forum, April 2024, Niklas Höhne
 
CCXG global forum, April 2024, Nino Tkhilava
CCXG global forum, April 2024,  Nino TkhilavaCCXG global forum, April 2024,  Nino Tkhilava
CCXG global forum, April 2024, Nino Tkhilava
 
LCCXG global forum, April 2024, Lydie-Line Paroz
LCCXG global forum, April 2024,  Lydie-Line ParozLCCXG global forum, April 2024,  Lydie-Line Paroz
LCCXG global forum, April 2024, Lydie-Line Paroz
 
Little Green Ranger ESG Sustainability Report
Little Green Ranger ESG Sustainability ReportLittle Green Ranger ESG Sustainability Report
Little Green Ranger ESG Sustainability Report
 
CCXG global forum, April 2024, Beatrice Cyiza
CCXG global forum, April 2024,  Beatrice CyizaCCXG global forum, April 2024,  Beatrice Cyiza
CCXG global forum, April 2024, Beatrice Cyiza
 
7. PD 705 & RELEVANT FORESTRY LAWS PHILIPPINES
7. PD 705 & RELEVANT FORESTRY LAWS PHILIPPINES7. PD 705 & RELEVANT FORESTRY LAWS PHILIPPINES
7. PD 705 & RELEVANT FORESTRY LAWS PHILIPPINES
 
CCXG global forum, April 2024, Sirini Jeudy-Hugo
CCXG global forum, April 2024,  Sirini Jeudy-HugoCCXG global forum, April 2024,  Sirini Jeudy-Hugo
CCXG global forum, April 2024, Sirini Jeudy-Hugo
 
Health Facility Electrification: State of Play
Health Facility Electrification: State of PlayHealth Facility Electrification: State of Play
Health Facility Electrification: State of Play
 
CCXG global forum, April 2024, Geraldine Ang
CCXG global forum, April 2024, Geraldine AngCCXG global forum, April 2024, Geraldine Ang
CCXG global forum, April 2024, Geraldine Ang
 
Get inspired by SYMBA Project: promoting Industrial Symbiosis
Get inspired by SYMBA Project: promoting Industrial SymbiosisGet inspired by SYMBA Project: promoting Industrial Symbiosis
Get inspired by SYMBA Project: promoting Industrial Symbiosis
 
CCXG global forum, April 2024, Surabi Menon
CCXG global forum, April 2024, Surabi MenonCCXG global forum, April 2024, Surabi Menon
CCXG global forum, April 2024, Surabi Menon
 
CCXG global forum, April 2024, MJ Mace
CCXG global forum, April 2024,   MJ MaceCCXG global forum, April 2024,   MJ Mace
CCXG global forum, April 2024, MJ Mace
 
CCXG global forum, April 2024, Alban Kitous
CCXG global forum, April 2024,  Alban KitousCCXG global forum, April 2024,  Alban Kitous
CCXG global forum, April 2024, Alban Kitous
 
https://www.facebook.com/people/Proper-Keto-Capsules-UK/61557989683758/
https://www.facebook.com/people/Proper-Keto-Capsules-UK/61557989683758/https://www.facebook.com/people/Proper-Keto-Capsules-UK/61557989683758/
https://www.facebook.com/people/Proper-Keto-Capsules-UK/61557989683758/
 
CCXG global forum, April 2024, David Mutisya
CCXG global forum, April 2024,  David MutisyaCCXG global forum, April 2024,  David Mutisya
CCXG global forum, April 2024, David Mutisya
 
CCXG global forum, April 2024, XU Huaqing
CCXG global forum, April 2024,  XU HuaqingCCXG global forum, April 2024,  XU Huaqing
CCXG global forum, April 2024, XU Huaqing
 

Pekka Huhtanen, SLU: Dietary and animal factors influencing methane production in dairy cows and models to predict methane formation

  • 1. Dietary and animal factors influencing methane production in dairy cows and models to predict methane formation Pekka Huhtanen, Edward Cabezas-Garcia and Mohamamd Ramin Swedish University of Agricultural Sciences, Sweden Valio Ltd, Finland
  • 2. Introduction  Methane budget  Mechanisms of methane production  Dietary factors  Animal factors  Conclusions
  • 4. Greenhouse gas and agriculture  ~ 30% GHG emissions relate to agriculture and land use  18% livestock alone (more than the transportation sector) Globally livestock sector contributes  9% of CO2 emissions  37% of CH4 emissions  65% of N2O emissions  64% of NH3 emission (Steinfeld et al. 2006)
  • 5. CH4 CO2 Methanogens Protozoa H2 H2 Methane production a microbially driven process to remove hydrogen Feed •Reduce H+ production •Provide alternative H+ sink •Change microbial population
  • 6. Fermentation stoichiometry  Production and utilisation of hydrogen (H2) determines how much methane is produced  Carbohydrate polymers (fibre (NDF), starch, etc.) are degraded to glucose  Glucose (hexose = C6) is degraded to 2 pyruvate  Pyruvate is fermented to VFA, CO2 and CH4  C6  2 Acetate (C2) + CO2 + CH4  C6  2 Propionate (C3) + 0.5 CO2 – 0.5 CH4  C6  1 Butyrate (C4) + 1.5 CO2 + 0.5 CH4
  • 7. Wolin equation  Estimates production of CH4 per mole volatile fatty acids (VFA) produced in the rumen  CH4 (mol/mol VFA) = 0.5 * Acetate – 0.25 * Propionate + 0.5 * Butyrate  VFA proportions expressed as mol / mol; eg. 0.65 – 0.20 – 0.15  CH4 = 0.65 * 0.5 – 0.2 * 0.25 + 0.5 * 0.15 = 0.35  CO2 (mmol/mol VFA) = 0.5 * Acetate + 0.25 * Propionate + 1.5 * Butyrate  CH4 = 0.65 * 0.5 + 0.2 * 0.25 + 1.5 * 0.15 = 0.60
  • 8. Simulation from raw data by Kittelmann et al. (2014) y = 0.053x - 4.76 R² = 0.16 y = 0.037x + 1.14 8 10 12 14 16 18 20 22 330 350 370 390 410 CH4,g/kgDMI CH4VFA (mmol/mol) Lin. (Observed) Lin. (Predicted) CH4VFA = 0.5 × C2 - 0.25 × C3 + 0.5 × C4 (Wolin, 1960) Cabezas-Garcia (2017)
  • 9. Wolin equation / conclusions  Good basis for understanding factors influencing CH4 production  Does not take into account other H2 sinks (microbial cells, nitrate)  Is consistent with observed changes in VFA and CH4 when diet composition manipulated  Feed lot diets >90% concentrates, >40% propionate of rumen VFA and <3% CH4-Energy of GE intake  Forage based dairy cow diets <50% concentrate DM, 17- 22% propionate and 6-7% CH4-E of GE  Is also related to between animal variation, but explains rather small proportion of variability
  • 10. How to express methane production?  Total production (g/d, L/d, MJ/d)  Mainly influenced by intake  Positively correlated to production  Methane yield (g/kg DMI, % of GEI)  Describes how much one unit of intake produce CH4  Decrease as feeding level / intake increase  Biologically more correct than total CH4  CH4 per NDF intake biologically meaningless, since other dietary components also produce CH4  Methane intensity (g per unit of product; e.g. kg ECM, kg LWG, kg carcass gain)  Mainly influenced by production level  Practical target to reduce CH4 per unit of product  Especially in growing cattle Body size influence  Life time intensity – takes into account longevity
  • 11. Effects of dietary factors on CH4 - Intake  Feed intake is the most important factor affecting total CH4, the effects of other factors small but significant  Explained 85 – 95% of variation in total CH4 production (treatment means data)  Small R2 for individual animal data (between animal variation, greater random error)  Relationship between intake and CH4 not linear; power function biologically most relevant: CH4 = a * DMIb
  • 12. Intake vs. methane yield  Total CH4 increase with increased DMI, but CH4 yield decrease, because of 1. Digestibility decreases due to faster passage rate – less truly fermented carbon per unit of intake 2. Efficiency of microbial cell synthesis increases – more carbon to cells and less to VFA and gasses 3. Microbial cells are more reduced than fermented CHO – microbes are H2 sink 4. Small changes in rumen fermentation pattern towards propionate The decrease about 10% per multiple of maintenance
  • 13. Factors influencing methane yield (1) Digestibility  Methane yield increase per kg DMI or GEI with improved digestibility, but reduce when expressed per digestible energy  Methane can only be produced from fermentable material  The effects of forage (grass silage) digestibility have been conflicting  Can be confounded by intake level, microbial efficiency and fermentation pattern  Nitrates in early harvested silages  Methane intensity most likely decrease due to increased DMI and production
  • 14. Factors influencing methane yield (2) Carbohydrates (starch, fibre, NFC)  Within the range of dairy cow diets (<70-75% concentrate DM) the effects are relatively small  With high concentrate feed-lot diets much less CH4 (2- 3 vs 6-7% of GEI)  With grass silage-based diets increased concentrate proportion does not markedly influence rumen fermentation: mainly increased butyrate at the expense of reduced acetate – minor changes in propionate  The effects of concentrate supplementation variable; sometimes even increases in CH4 with increased concentrates (barley): e.g. Beever et al. (1988); Moss et al. 1994)
  • 15. Factors influencing methane yield (2) Carbohydrates (starch, fibre, NFC)  Rather small effects within typical dairy cow diets  Grass silage  grain: the increase in GHG during feed production greater than decrease in CH4 (in a Danish study greater GHG of barley compared with grass silage was 14 g CH4 per kg DM)  More fermentable material to faeces – increased CH4 production from manure?  CH4 intensity can improve due to increased yield  Sustainability? Human edible output/input decreases. Pigs and poultry utilise grain more efficiently for protein production with much less CH4
  • 16. Factors influencing methane yield (1) Fat  Reduce CH4 yield  Replace fermentable CHO, often starch, in the diet (main factor)  Biohydrogenation of unsaturated fatty acids; with practical dietary fat levels minor contributor (1 mol C18:2 (280 g) takes 4 h-atoms = 1 mol CH4 = 16 g (about 3.5-4.0% of daily CH4 from dairy cows)  Changes in rumen fermentation pattern towards propionate  Grass silage-based diets rather resistant to changes in fermentation pattern
  • 17. Mitigation strategies (3)  Additives  Hypothesis: Influence rumen microbes  Plant extracts: not economically feasible: effective doses used in vitro studies impossible for dairy cows  Monensin and other ionophores not allowed in EU  Nitrates; effective and could be used to replace urea as N supplement  More expensive than urea  If NPN not required N losses increase  Alternative H2 acceptors (e.g. funarate)  3-nitroxypropanol  Has been effective (20-30% reduction) even in long term studies, but not yet accepted
  • 18.
  • 19.
  • 21. Between-cow variation in CH4  Highly variable values for between cow coefficient of variation (CV) in total CH4 or CH4 yield presented  High values usually when emissions determined by the “Sniffer” methods  Realistic values <12-15% CV – even less  Our understanding of mechanisms of CH4 production do not support high between cow- CV
  • 22.
  • 23.
  • 24.
  • 25. On farm study (Bell et al.)
  • 27. 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 12 14 Days HeadIn(proportion) Cow1 Cow2 Cow3 Cow4 CH4 (g/d)= 230 + 276 * HP CO2 (kg/d) = 6.3 + 6.7 * HP
  • 28. CH4 CO2 A B C Gas fluxes, g/d ”Flux vs Sniffer” methods The GreenFeed System Sniffer refers to a method which mimics gas analysers (Garnsworthy et al. 2012) Sniffer, No air flow Sniffer, No air flow
  • 29. Exp. Design Diet N Mean (g/d) CV Res. SD Rep1 Latin square Forage 20 405 0.09 21.8 0.72 Latin square Forage 30 421 0.08 29.3 0.53 Latin square Straw 16 419 0.12 37.3 0.60 Switch-back Concentrate 16 451 0.12 22.1 0.84 Cyclic-change over For. x Conc. 16 443 0.11 37.3 0.60 Latin square Oats 16 454 0.12 21.7 0.86 Cyclic change-over Protein 29 455 0.10 24.3 0.76 Cyclic change-over Protein 24 395 0.09 31.1 0.51 Cyclic change-over Protein 25 453 0.11 30.2 0.65 Switch-back Glycerol 22 452 0.13 27.6 0.81 “GreenFeed” studies at RBD (CH4, g/d) 1Repeatability = δ2 Cow / (δ2 Cow + δ2 Residual)
  • 30. Reasons for between-CV Rumen microbiome Animal anatomy/physiology
  • 31. Animal factors Rumen microbiome Intensive subject of research to relate variation in methane production to rumen microbial population Many statistical relationships found, but are they really causal relationships Large number of microbes and variables  many significant relationships by random Large between animal variation can be associated with very similar end-products “Super-bacs” may not survive in the rumen – need a specific niche For example, acetogenic bacteria (use H2 to produce acetate from CO2) exist in the rumen in small numbers
  • 32. Animal factors Rumen microbiome Sometimes abundance of different methanogens have been associated with differences in CH4, sometimes not  causal relationship? It could be expected that if rumen microbiome is involved in between animal variation in CH4, it should be seen in rumen VFA pattern Analysis of Kittelmann et al. data indicated that the relationship between Wolin CH4/VFA and CH4 yield was close to expected, but it explained only 16% of variation in observed CH4 These data included selected low and high emitters, i.e. variability likely to be greater than in “unselected” population
  • 33. Cabezas-Garcia et al. (2017) J. Dairy Sci.
  • 34. Cabezas-Garcia et al. (2017) J. Dairy Sci. Overall (including diet, animal and period) CV 4.3% - with diets based on grass silage differences in rumen fermentation pattern play only minor role in Variation of CH4
  • 35. VFA’s molar % vs concentrations 0,011 0,025 0,051 0,046 0,062 0,098 0,000 0,020 0,040 0,060 0,080 0,100 0,120 Acetate Propionate Butyrate Between-cowCV mmol/mol mmol/L Repeatability = δ2 Cow / (δ2 Cow + δ2 Residual) Molar proportions Acetate = 0.28 Propionate = 0.06 Butyrate = 0.23 Concentrations Acetate = 0.46 Propionate = 0.33 Butyrate = 0.55 Repeatability
  • 36. Variance components (II) Item NDF pool iNDF-kp (g/kg BW) (1/h ) Mean 19.4 0.023 CV Total 0.255 0.242 Diet 0.088 0.086 Cow 0.130 0.090 Repeatability1 0.72 0.39 1Repeatability = δ2 Cow / (δ2 Cow + δ2 Residual)
  • 37. Animal factors  Much more variability in variables related to animal physiology than rumen microbiome  Repeatability higher for physiological variables  E.g. higher CV and rep for rumen VFA concentrations than molar proportions (passage rate, rumen volume, absorption rate)  Variation in physiological variables analogous to intake effects  Passage rate increases  Digestibility decreases with increased passage rate  Microbial efficiency increases with passage rate  Fermentation pattern change (minor) with passage rate
  • 38. Methane and Digestibility  Digestibility (D) is a function of digestion rate (kd) and passage rate (kp)  D = kd / (kd + kp)  Digestion rate is a feed (NOT ANIMAL) character  it is impossible to reduce CH4 and maintain (or improve digestibility) by selecting low emitters (not the same as e.g. production and fertility  Reduced D  more fermentable substrate to manure  more CH4 from manure
  • 39. Methane vs. digestibility High Low High Low    In vivo Goopy et al 66.4 64.8 23.5 20.8 0.6 Pinares‐Patino et al.  Pasture 62.9 59.5 24.6 21.7 1.2 Pinares Pellet 63.4 58.1 10.8 6.4 1.2    Modelling Huhtanen Cow 75.8 71.5 24.4 20.4 1.1 Sheep 77.3 73.1 29.2 25.0 1.0 Methane, g/kg DMDigestibility, %  Cellulose digestibility vs. CH4 yield (r = 0.66)  NDF digestibility vs CH4 yield (r = 0.74)  Passage rate vs. Digestibility (r = - 0.78)  Energy loss per 1 g/kd DMI in CH4 (0.185 MJ) is greater than gain from reduced CH4 (0.055 MJ)
  • 40. Adapted individual cow data by Shiemman et al. (1971) y = 25.8x - 11.1 R² = 0.81 y = 37.5x - 19.0 R² = 0.85 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 0,68 0,70 0,72 0,74 0,76 0,78 0,80 0,82 CH4/GEI,% GE Digestibility, g/kg Lin. (Lactation) Lin. (Maintenance)
  • 41. Huhtanen et al. 2016; Anim. Prod Sci 10 g/kg decrease in OMD decreased CH4 yield by 0.9-1.0 g/kg DM 1 h increase in MRT 0.33 – 0.37 g/kg DM increase in CH4 yield
  • 42. Importance of CH4 energy  Johnson & Johnson (1995) reported a range from 2 to 12% in CH4-energy of GEI  This represents the whole range between intake levels (maintenance vs. ad libitum) and diet composition (highly digestible diet at low intake (12) vs. feedlot diet ad libitum (2)  Within practical dairy cow diets between-cow CV about 10%  Mean CH4 = 6.5% of GEI  GEI = 400 MJ/d (21-22 kg DM)  CH4 = 0.065 * 400 = 26 MJ/d  20% reduction = 0.2 * 24 MJ = 5.2 MJ  ME requirement of 1 kg ECM = 5.2 MJ  potential for 1.0 kg ECM  At zero ME balance partitioning of incremental ME about 50:50 between body tissues and mammary gland  0.5 * 1.0 = 0.5 kg ECM  Rather small potential to increase ME intake
  • 43. Conclusions 1. Potential to reduce CH4 in our condition rather limited 1. High forage quality + moderate amounts of concentrates + optimal protein 2. Economically optimal level of fat (e.g. replacement of barley/wheat with oats) 2. Increased longevity – less CH4 from replacement 3. Selection for improved feed efficiency  less CH4 per unit of product (no need to measure CH4) 4. We need to be careful in selection programs to avoid reducing diet, especially cell wall digestibility – ruminants’ special character (and niche) in human food production 5. The whole system (feed production – animal – manure) should be taken into accounr