Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Esa Kurkela, VTT: Liikenteen biopolttoaineet ja kemikaalit

481 views

Published on

Biotalous ja energiamurros – mitä vuonna 2030?Luonnonvarakeskuksen (Luke) ja Teknologian tutkimuskeskus VTT:n seminaari 26.1.2017

Published in: Science
  • Be the first to comment

  • Be the first to like this

Esa Kurkela, VTT: Liikenteen biopolttoaineet ja kemikaalit

  1. 1. Liikenteen biopolttoaineet ja kemikaalit Esa Kurkela Biotalous ja energiamurros – mitä vuonna 2030? 26.1.2017 Helsinki
  2. 2. 25/01/2017 2 Net increase of carbon stock in the Finnish forests in 1990 - 2010 FINNISH WOOD BALANCE – MAXIMIZING CASCADING 0 20 40 60 80 100 120 2012 2020 2030 Energy wood Hardwood pulpwood Softwood pulpwood Hardwood logs Softwood logs Harvest potential Harvest demandl CrossCluster 2030 scenario 100% 90% <50% Territorial waters Other land use Forest chips potential utilization rate (%) 2020 Source: Annual growth million m3/a
  3. 3. 3 Hierarchy of fuels Aviation Marine Heavy-duty road vehicles Rail Light-duty road vehicles & urban services Needforliquidfuels Possibilityforelectrificationincreases Source: Nils-Olof Nylund, IMECHE Future Fuels 2016.
  4. 4. 44 PEAT AMMONIA PLANT OULU, FINLAND, 1991 LARGE-SCALE GASIFICATION SPECIALLY DEVELOPED FOR WOOD FEEDSTOCKS COAL GASIFIER APPLIED FOR PEAT AND WOOD NSE BIOFUELS DEMO, VARKAUS, FINLAND, 2011 NEW PROCESS FOR SMALLER SCALE AND WITH LOWER CAPEX PILOT PLANT AT VTT BIORUUKKI, ESPOO, 2016 2010 2015 20201985 2005 203020001995 2025 Biomass gasification for biofuels and bio-chemicals - Long experience of medium-to-large scale thermochemical biorefineries
  5. 5. 5 Taloudellisesti kilpailukykyinen kokoluokka on erittäin suuri • Vähintään 100-200 ktoe/a tuotanto; biomassasyöttö 300-600 MW • Tarvittava investointi 500 -1000 M€ • Ensimmäinen laitos jopa 50 % kalliimpi kuin kypsä teknologia • Tekniset ja taloudelliset riskit liian suuret – julkisen tuen tarve liian suuri • Sivutuotelämpöä syntyy 100-200 MW – usein vaan lahdevoimaksi Raaka-aineen hankinta ja logistiikka haasteellista • Paikallisesti saatavilla olevien tähteiden määrä rajallinen • Laitos joutuu käyttämään myös runkopuuta/kuitupuuta • Raaka-ainekustannukset nousevat helposti tasolle 25-30 €/MWh Tarvitaan hajautettua pienemmän kokoluokan teknologiaa! • Prosessin yksinkertaistaminen ja CAPEXIN alentaminen • Integroinnin maksimointi: biomassalogistiiikka, voimalaitosintegraatio • Paikallisten tähteiden ja jätteiden hyödyntäminen Suuren kokoluokan keskitetyn kaasutus- ja synteesilaitoksen haasteet
  6. 6. 66 • Pyrolysis oil • Synthetic hydrocarbons • Methanol • Synthetic methane • Co-refining • Drop-in transportation fuels • Olefins for renewable packaging materials • Basic chemicals, fertilisers • Aromatics • Forest residues and agricultural residues • Industrial and municipal wastes • Integration to food, forest, chemical or metal industries Integrating production of fuels and chemicals from biomass and residues to existing industries to improve competitiveness Transport of intermediate products Large-scale refineries or chemical industries Several industrial sites with local CHP integration
  7. 7. 7 Hydrocarbon liquids OXYGEN GASIFIER BELT DRYER ASU AUXILIARY BOILER Air N2 O2 H2S Steam Steam Filter ash Purge Steam Unconverted gas Bypass HOT-GAS FILTER ATR POX REFORMER SOUR SHIFT SCRUBBER COOLER CENTRIFUG. COMPR. WET CO2 REMOVAL RECYCLE F-T SYNTHESIS RECOVERY & UPGRADE CO2 Flue gas Forest residues POWER GENERATION EQUIPMENT WSA H2SO4 WET SULPHUR REMOVAL Block diagram for a stand-alone large-scale biomass-to-liquids plant
  8. 8. 8 Hydrocarbon liquids OXYGEN GASIFIER BELT DRYER ASU AUXILIARY BOILER Air N2 O2 H2S Steam Steam Filter ash Purge Steam Unconverted gas Bypass HOT-GAS FILTER ATR POX REFORMER SOUR SHIFT SCRUBBER COOLER CENTRIFUG. COMPR. WET CO2 REMOVAL RECYCLE F-T SYNTHESIS RECOVERY & UPGRADE CO2 Flue gas Forest residues POWER GENERATION EQUIPMENT WSA H2SO4 WET SULPHUR REMOVAL Block diagram for a stand-alone large-scale biomass-to-liquids plant Give up oxygen plant: -12%
  9. 9. 9 Hydrocarbon liquids OXYGEN GASIFIER BELT DRYER ASU AUXILIARY BOILER Air N2 O2 H2S Steam Steam Filter ash Purge Steam Unconverted gas Bypass HOT-GAS FILTER ATR POX REFORMER SOUR SHIFT SCRUBBER COOLER CENTRIFUG. COMPR. WET CO2 REMOVAL RECYCLE F-T SYNTHESIS RECOVERY & UPGRADE CO2 Flue gas Forest residues POWER GENERATION EQUIPMENT WSA H2SO4 WET SULPHUR REMOVAL Block diagram for a stand-alone large-scale biomass-to-liquids plant Eliminate separate WGS step: -2% Give up oxygen plant: -12%
  10. 10. 10 Hydrocarbon liquids OXYGEN GASIFIER BELT DRYER ASU AUXILIARY BOILER Air N2 O2 H2S Steam Steam Filter ash Purge Steam Unconverted gas Bypass HOT-GAS FILTER ATR POX REFORMER SOUR SHIFT SCRUBBER COOLER CENTRIFUG. COMPR. WET CO2 REMOVAL RECYCLE F-T SYNTHESIS RECOVERY & UPGRADE CO2 Flue gas Forest residues POWER GENERATION EQUIPMENT WSA H2SO4 WET SULPHUR REMOVAL Block diagram for a stand-alone large-scale biomass-to-liquids plant Give up oxygen plant: -12% Eliminate separate WGS step: -2% Rethink on-site steam generation: -16%
  11. 11. 11 Hydrocarbon liquids OXYGEN GASIFIER BELT DRYER ASU AUXILIARY BOILER Air N2 O2 H2S Steam Steam Filter ash Purge Steam Unconverted gas Bypass HOT-GAS FILTER ATR POX REFORMER SOUR SHIFT SCRUBBER COOLER CENTRIFUG. COMPR. WET CO2 REMOVAL RECYCLE F-T SYNTHESIS RECOVERY & UPGRADE CO2 Flue gas Forest residues POWER GENERATION EQUIPMENT WSA H2SO4 WET SULPHUR REMOVAL Block diagram for a stand-alone large-scale biomass-to-liquids plant Give up oxygen plant: -12% Eliminate separate WGS step: -2% Simplify acid gas removal: -15% Rethink on-site steam generation: -16%
  12. 12. 12 Hydrocarbon liquids OXYGEN GASIFIER BELT DRYER ASU AUXILIARY BOILER Air N2 O2 H2S Steam Steam Filter ash Purge Steam Unconverted gas Bypass HOT-GAS FILTER ATR POX REFORMER SOUR SHIFT SCRUBBER COOLER CENTRIFUG. COMPR. WET CO2 REMOVAL RECYCLE F-T SYNTHESIS RECOVERY & UPGRADE CO2 Flue gas Forest residues POWER GENERATION EQUIPMENT WSA H2SO4 WET SULPHUR REMOVAL Block diagram for a stand-alone large-scale biomass-to-liquids plant Give up oxygen plant: -12% Eliminate separate WGS step: -2% Simplify acid gas removal: -15% Rethink on-site steam generation: -16% Identified potential for CapEx reductions: Oxygen plant 12% Sour shift (WGS) 2% Steam generation 16% Rectisol / WSA 15%  Up to 45% decrease
  13. 13. 13 Steam Forest residues FT-wax Char DFB GASIFIER BELT DRYER DFB OXIDISER Filter ash Off-gas Air HOT-GAS FILTER ATR POX REFORMER SCRUBBER COOLER SORBENT SULPHUR REMOVAL ONCE THRU F-T SYNTHESIS RECOVERY Flue gas STEAM/DH GENERATION EQUIPMENT CENTRIFUGAL COMPRESSOR Air Medium-scale low CapEx target biomass-to-liquids process Typical process characteristics  Biomass input: 100 MW  FT-wax output: 50-55 MW (35 ktoe/a)  Steam/district heat output: 15-25 MW  Target size: 100-200 MW biomass  Target cost: 80 €/MWh FT wax (~ 900 €/toe)
  14. 14. 14 STEAM GASIFIER OXIDISER AIR TO OXIDISER REFORMER PRODUCT GAS CYCLONE COOLER FLUE GAS N2 CFB Gasifier 770 - 840 °C DFB pilot plant at Bioruukki 2016 test runs FILTER 600 - 750 °C BIOMASS BED MATERIAL BFB Oxidiser 860 - 890 °C VTT project website: http://www.vtt.fi/sites/BTL2030
  15. 15. 15 Road map for medium-scale low CapEx BTL process via piloting and demonstration Phase 1: Piloting at Bioruukki & system studies 2016 - 2017, 3 M€ (On-going BTL2030 project) Phase 2: Demonstration at an industrial site 2018 - 2020, 50 M€ (in preliminary planning phase) Phase 3: First production plant, 220 M€; investment decision 2020 (feasibility studies for the concept in 2017) Phase 4: Replication at global markets at 150 - 200 M€/plant • 2025: 5 plants • 2030: 10 - 20 plants • 2030 > full market penetration VTT project website: http://www.vtt.fi/sites/BTL2030
  16. 16. 16 Mikä rooli kaasutus-BTL-teknologialla energiamurroksessa 2030 jälkeen?  Aurinko, tuuli ja maalämpö kasvavat voimakkaasti  Hiilen käyttö vähenee voimakkaasti / loppuu kokonaan  Perinteisen CHP-voimalaitosteknologian rooli pienenee  Kevyt liikenne sähköistyy – perustuen uusiutuvaan sähköön  Maakaasu säilyttää asemansa hiiltä pidempään  Myös teollisuuden prosessihöyryn tarve säilyy ja yhdyskuntien lämmitystarve nykyistä pienempänä  Raskas liikenne tarvitsee vähähiilistä polttoainetta ja kemian teollisuus raaka-aineita Kehitetään hajautettuun tuotantoon ja pienille lämpökuormille soveltuva prosessi joka pystyy mukautumaan vaihtelevasti saatavilla olevaan aurinko- ja tuulienergiaan
  17. 17. 17 CO2 recycle Off-gas and steam to boiler OPERATION DURING ”SOLAR ENERGY SEASON” 15 MW 15 MW 20 MW 2 MW H2 BIOMASS FT-WAX to refinery WATER RENEWABLE ELECTRICITY Steam to gasifier Heat for biomass drying GASIFIER & REFORMER GAS CLEANUP HEAT to district heatingCHP PLANT ELECTROLYSIS O2 Process idea for highly-flexible combined Fuel and Heat production SYNTHESIS WITH RECYCLE
  18. 18. 18 Off-gas and steam to boiler OPERATION DURING ”DARK AND COLD HEATING SEASON” 30 MW 10 MW 15 MW BIOMASS SNG or FT-wax SYNTHESIS ONCE-THROUGH Steam to gasifier Heat for biomass drying GASIFIER & REFORMER GAS CLEANUP HEAT & POWER ENRICHED AIR To peak power and heat CHP PLANT Process idea for highly-flexible combined Fuel and Heat production
  19. 19. 1919 Small scale syngas: background technologies - target size 10-50 MW biomass input  Updraft gasifier “Bioneer” in commercial use since 1980’s  Catalytic reforming of tars and two-stage gasifier “Novel” were developed and demonstrated in early 2000  New SXB-gasifier concept (pressurized)  In-situ tar decomposition  Pilot plant at Bioruukki for CHP applications 2016-2017  Design basis for syngas  Target schedule  Pilot development 2017-20  Demonstration 2021-23  H2020 funding applied both for the FT and SNG cases BIONEER, 1980’s SXB – PILOT AT BIORUUKKI, 2016
  20. 20. “Biomass will have a significant role also in the future renewable energy mix, but the use will be partly shifted from the present heat and power production to the production of fuels and chemicals – on this road gasification technologies will play a key role” Kiitos! http://www.vttresearch.com/services/low-carbon-energy

×