SlideShare a Scribd company logo
1 of 48
Statistics for Managers
Using Microsoft® Excel
4th Edition
Chapter 5
Some Important Discrete
Probability Distributions
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc.

Chap 5-1
Chapter Goals
After completing this chapter, you should be able
to:
 Interpret the mean and standard deviation for a
discrete probability distribution
 Explain covariance and its application in finance
 Use the binomial probability distribution to find
probabilities
 Describe when to apply the binomial distribution
 Use the hypergeometric and Poisson discrete
probability distributions to find probabilities
Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-2
Introduction to Probability
Distributions


Random Variable
 Represents a possible numerical value from
an uncertain event
Random
Variables

Ch. 5

Discrete
Random Variable

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Continuous
Random Variable

Ch. 6

Chap 5-3
Discrete Random Variables


Can only assume a countable number of values
Examples:


Roll a die twice
Let X be the number of times 4 comes up
(then X could be 0, 1, or 2 times)

Toss a coin 5 times.
Let X be the number of heads
(then X = Using
Statistics for Managers0, 1, 2, 3, 4, or 5)


Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-4
Discrete Probability Distribution
Experiment: Toss 2 Coins.
4 possible outcomes

T

Let X = # heads.

Probability Distribution

T

T

H
H
Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

1

2/4 = .50
1/4 = .25

Probability

H

1/4 = .25

2

H

Probability

0

T

X Value

.50
.25

0

1

2

X

Chap 5-5
Discrete Random Variable
Summary Measures


Expected Value (or mean) of a discrete
distribution (Weighted Average)
N

µ = E(X) = ∑ Xi P( Xi )
i=1



Example: Toss 2 coins,
X = # of heads,
compute expected value of X:

X

P(X)

0

.25

1

.50

2

.25

E(X) = (0 x .25) + (1 x .50) + (2 x .25)
Statistics for Managers Using
= 1.0

Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-6
Discrete Random Variable
Summary Measures
(continued)


Variance of a discrete random variable
N

σ 2 = ∑ [Xi − E(X)]2 P(Xi )
i=1



Standard Deviation of a discrete random variable

σ = σ2 =

N

[Xi − E(X)]2 P(Xi )
∑
i=1

where:
E(X) = Expected value of the
Statistics for Managers Using discrete random variable X
Xi = the ith outcome of X
Microsoft Excel, 4e © 2004ith occurrence of X
P(Xi) = Probability of the

Prentice-Hall, Inc.

Chap 5-7
Discrete Random Variable
Summary Measures
(continued)


Example: Toss 2 coins, X = # heads,
compute standard deviation (recall E(X) = 1)

σ=

∑ [X − E(X)] P(X )
2

i

i

σ = (0 − 1)2 (.25) + (1 − 1)2 (.50) + (2 − 1)2 (.25) = .50 = .707
Possible number of heads
= 0, 1, or 2

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-8
The Covariance


The covariance measures the strength of the
linear relationship between two variables



The covariance:
N

σ XY = ∑ [ Xi − E( X)][( Yi − E( Y )] P( Xi Yi )
i=1

where:

X = discrete variable X
Xi = the ith outcome of X
Y = discrete variable Y
Yi = the ith outcome of Y
Statistics for Managers Using
P(XiYi) = probability of occurrence of the condition affecting
Microsoft Excel, 4e ©ith2004 of X and the ith outcome of Y
the outcome

Prentice-Hall, Inc.

Chap 5-9
Computing the Mean for
Investment Returns
Return per $1,000 for two types of investments

P(XiYi)

Economic condition

Investment
Passive Fund X Aggressive Fund Y

.2

Recession

- $ 25

- $200

.5

Stable Economy

+ 50

+ 60

.3

Expanding Economy

+ 100

+ 350

E(X) = μX = (-25)(.2) +(50)(.5) + (100)(.3) = 50
Statistics for Managers Using
E(Y) = μY = (-200)(.2) +(60)(.5) + (350)(.3) = 95
Microsoft Excel, 4e © 2004
Chap 5-10
Prentice-Hall, Inc.
Computing the Standard Deviation
for Investment Returns
P(XiYi)

Economic condition

Investment
Passive Fund X Aggressive Fund Y

.2

Recession

- $ 25

- $200

.5

Stable Economy

+ 50

+ 60

.3

Expanding Economy

+ 100

+ 350

σ X = (-25 − 50)2 (.2) + (50 − 50)2 (.5) + (100 − 50)2 (.3)
= 43.30
σ Y = (-200 − 95)2 (.2) + (60 − 95)2 (.5) + (350 − 95)2 (.3)
Statistics for Managers Using
= 193 71
Microsoft Excel, .4e © 2004
Chap 5-11
Prentice-Hall, Inc.
Computing the Covariance
for Investment Returns
P(XiYi)

Economic condition

Investment
Passive Fund X Aggressive Fund Y

.2

Recession

- $ 25

- $200

.5

Stable Economy

+ 50

+ 60

.3

Expanding Economy

+ 100

+ 350

σ X,Y = (-25 − 50)(-200 − 95)(.2) + (50 − 50)(60 − 95)(.5)
+ (100 − 50)(350 − 95)(.3)
= 8250
Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-12
Interpreting the Results for
Investment Returns


The aggressive fund has a higher expected
return, but much more risk
μY = 95 > μX = 50
but
σY = 193.21 > σX = 43.30

The Covariance of 8250 indicates that the two
investments are positively related and will vary
Statistics for Managers Using
in the same 2004
Microsoft Excel, 4e © direction


Prentice-Hall, Inc.

Chap 5-13
The Sum of
Two Random Variables


Expected Value of the sum of two random variables:

E(X + Y) = E( X) + E( Y )


Variance of the sum of two random variables:

Var(X + Y) = σ 2 + Y = σ 2 + σ 2 + 2σ XY
X
X
Y


Standard deviation of the sum of two random variables:

Statistics for Managers Using
σ
Microsoft Excel, 4e © 2004 X + Y =
Prentice-Hall, Inc.

σ2 +Y
X
Chap 5-14
Portfolio Expected Return
and Portfolio Risk


Portfolio expected return (weighted average
return):

E(P) = w E( X) + (1 − w ) E( Y )


Portfolio risk (weighted variability)

σ P = w 2σ 2 + (1 − w )2 σ 2 + 2w(1 - w)σ XY
X
Y
Where
w = portion of portfolio
Statistics for Managers Using value in asset X
(1 - w) = portion of portfolio value in asset Y
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-15
Portfolio Example
Investment X:
Investment Y:

μX = 50
σX = 43.30
μY = 95
σY = 193.21
σXY = 8250

Suppose 40% of the portfolio is in Investment X and
60% is in Investment Y:
E(P) = .4 (50) + (.6) (95) = 77

σ P = (.4)2 (43.30)2 + (.6)2 (193.21) 2 + 2(.4)(.6)(8250)
= 133.04

Statistics for Managers Using
The Excel, return and portfolio variability are between the values
Microsoft portfolio 4e © 2004
for investments X and Y considered individually
Chap 5-16
Prentice-Hall, Inc.
Probability Distributions
Probability
Distributions
Ch. 5

Discrete
Probability
Distributions

Continuous
Probability
Distributions

Binomial

Normal

Hypergeometric

Ch. 6

Uniform

Statistics for Poisson Using
Managers
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Exponential
Chap 5-17
The Binomial Distribution
Probability
Distributions
Discrete
Probability
Distributions
Binomial
Hypergeometric
Statistics for Poisson Using
Managers
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-18
Binomial Probability Distribution


A fixed number of observations, n




Two mutually exclusive and collectively exhaustive
categories







e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse

e.g., head or tail in each toss of a coin; defective or not defective
light bulb
Generally called “success” and “failure”
Probability of success is p, probability of failure is 1 – p

Constant probability for each observation


e.g., Probability of getting a tail is the same each time we toss
the coin

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-19
Binomial Probability Distribution
(continued)


Observations are independent




The outcome of one observation does not affect the outcome
of the other

Two sampling methods



Infinite population without replacement
Finite population with replacement

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-20
Possible Binomial Distribution
Settings


A manufacturing plant labels items as
either defective or acceptable



A firm bidding for contracts will either get a
contract or not



A marketing research firm receives survey
responses of “yes I will buy” or “no I will
not”

New job applicants either accept the offer
Statistics for Managers Using
or reject it


Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-21
Rule of Combinations


The number of combinations of selecting X
objects out of n objects is

n
n!
 =
 X  X! (n − X)!
 
where:

n! =n(n - 1)(n - 2) . . . (2)(1)
X! = X(X - 1)(X - 2) . . . (2)(1)

Statistics for Managers 0! = 1 (by definition)
Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-22
Binomial Distribution Formula
n!
X
n−X
P(X) =
p (1-p)
X ! (n − X)!
P(X) = probability of X successes in n trials,
with probability of success p on each trial
X = number of ‘successes’ in sample,
(X = 0, 1, 2, ..., n)
n = sample size (number of trials
or observations)
p = probability of “success”
Statistics for Managers Using

Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Example: Flip a coin four
times, let x = # heads:
n=4
p = 0.5
1 - p = (1 - .5) = .5
X = 0, 1, 2, 3, 4

Chap 5-23
Example:
Calculating a Binomial Probability
What is the probability of one success in five
observations if the probability of success is .1?
X = 1, n = 5, and p = .1

P( X = 1) =

n!
p X (1 − p)n− X
X! (n − X)!

5!
=
(.1)1(1 − .1)5−1
1 (5 − 1)!
!
= (5)(.1)(.9)4
Statistics for Managers Using
Microsoft Excel, 4e © 2004 = .32805
Prentice-Hall, Inc.

Chap 5-24
Binomial Distribution


The shape of the binomial distribution depends on the
values of p and n

Mean


Here, n = 5 and p = .1

.6
.4
.2
0

P(X)

X
0



Here, n = 5 and p = .5

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

.6
.4
.2
0

n = 5 p = 0.1

P(X)

1

2

3

4

5

n = 5 p = 0.5
X

0

1

2

3

4

5

Chap 5-25
Binomial Distribution
Characteristics




Mean

μ = E(x) = np

Variance and Standard Deviation

σ = np(1 - p)
2

σ = np(1 - p)
Where n = sample size
p = probability
Statistics for Managers of success
Using
(1 – p) = probability of failure

Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-26
Binomial Characteristics
Examples

μ = np
Mean = (5)(.1) = 0.5
σ = np(1 - p) = (5)(.1)(1 − .1)
= 0.6708

μ = np = (5)(.5) = 2.5
σ = np(1 - p) = (5)(.5)(1 − .5)

Statistics for Managers Using
= 1.118
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

.6
.4
.2
0

P(X)

X
0

.6
.4
.2
0

n = 5 p = 0.1

P(X)

1

2

3

4

5

n = 5 p = 0.5
X

0

1

2

3

4

5

Chap 5-27
Using Binomial Tables
n = 10
x

…

p=.20

p=.25

p=.30

p=.35

p=.40

p=.45

p=.50

0
1
2
3
4
5
6
7
8
9
10

…
…
…
…
…
…
…
…
…
…
…

0.1074
0.2684
0.3020
0.2013
0.0881
0.0264
0.0055
0.0008
0.0001
0.0000
0.0000

0.0563
0.1877
0.2816
0.2503
0.1460
0.0584
0.0162
0.0031
0.0004
0.0000
0.0000

0.0282
0.1211
0.2335
0.2668
0.2001
0.1029
0.0368
0.0090
0.0014
0.0001
0.0000

0.0135
0.0725
0.1757
0.2522
0.2377
0.1536
0.0689
0.0212
0.0043
0.0005
0.0000

0.0060
0.0403
0.1209
0.2150
0.2508
0.2007
0.1115
0.0425
0.0106
0.0016
0.0001

0.0025
0.0207
0.0763
0.1665
0.2384
0.2340
0.1596
0.0746
0.0229
0.0042
0.0003

0.0010
0.0098
0.0439
0.1172
0.2051
0.2461
0.2051
0.1172
0.0439
0.0098
0.0010

10
9
8
7
6
5
4
3
2
1
0

…

p=.80

p=.75

p=.70

p=.65

p=.60

p=.55

p=.50

x

Examples:
n = 10, p = .35, x = 3:

P(x = 3|n =10, p = .35) = .2522

Statistics for Managers Using
n=
Microsoft 10, p = .75, x =2004 P(x = 2|n =10, p = .75) = .0004
Excel, 4e © 2:
Chap 5-28
Prentice-Hall, Inc.
Using PHStat


Select PHStat / Probability & Prob. Distributions / Binomial…

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-29
Using PHStat
(continued)


Enter desired values in dialog box

Here: n = 10
p = .35
Output for X = 0
to X = 10 will be
generated by PHStat
Optional check boxes
Statistics for Managers Using
for additional output
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-30
PHStat Output

P(X = 3 | n = 10, p = .35) = .2522

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

P(X > 5 | n = 10, p = .35) = .0949

Chap 5-31
The Hypergeometric Distribution
Probability
Distributions
Discrete
Probability
Distributions
Binomial
Hypergeometric
Statistics for Poisson Using
Managers
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-32
The Hypergeometric Distribution


“n” trials in a sample taken from a finite
population of size N



Sample taken without replacement



Outcomes of trials are dependent



Concerned with finding the probability of “X”
successes in the sample where there are “A”
successes in the population

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-33
Hypergeometric Distribution
Formula
 A  N − A 
 

 X  n − X 

P( X) =  
N
 
n 
 
Where
N = population size
A = number of successes in the population
N – A = number of failures in the population
n = sample size
Statistics for Managers Using
X = number of successes in the sample
Microsoft Excel, = number of failures in the sample
n – X 4e © 2004

Prentice-Hall, Inc.

Chap 5-34
Properties of the
Hypergeometric Distribution


The mean of the hypergeometric distribution is
nA
μ = E(x) =
N



The standard deviation is
nA(N - A) N - n
σ=
⋅
2
N
N -1

Where

N-n
is called the “Finite Population Correction Factor”
N -1

from Using
Statistics for Managers sampling without replacement from a
Microsoft Excel, 4efinite population
© 2004
Chap 5-35
Prentice-Hall, Inc.
Using the
Hypergeometric Distribution
■

Example: 3 different computers are checked from 10 in
the department. 4 of the 10 computers have illegal
software loaded. What is the probability that 2 of the 3
selected computers have illegal software loaded?
N = 10
A=4

n=3
X=2

 A  N − A   4  6 
 
   
 X  n − X   2 1  (6)(6)
 =    =
P(X = 2) =  
= 0.3
120
N
10 
 
 
n 
3 
 
 

Statistics for Managers2Using 3 selected computers have illegal
The probability that of the
Microsoft Excel, 4e © .30, or 30%.
software loaded is 2004
Chap 5-36
Prentice-Hall, Inc.
Hypergeometric Distribution
in PHStat


Select:
PHStat / Probability & Prob. Distributions / Hypergeometric …

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-37
Hypergeometric Distribution
in PHStat

(continued)



Complete dialog box entries and get output …
N = 10
A=4

n=3
X=2

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

P(X = 2) = 0.3
Chap 5-38
The Poisson Distribution
Probability
Distributions
Discrete
Probability
Distributions
Binomial
Hypergeometric
Statistics for Poisson Using
Managers
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-39
The Poisson Distribution


Apply the Poisson Distribution when:


You wish to count the number of times an event
occurs in a given area of opportunity



The probability that an event occurs in one area of
opportunity is the same for all areas of opportunity



The number of events that occur in one area of
opportunity is independent of the number of events
that occur in the other areas of opportunity

The probability that two or more events occur in an
area of opportunity approaches zero as the area of
Statisticsopportunity becomes smaller
for Managers Using

MicrosoftThe average 2004
Excel, 4e © number of events per unit is λ (lambda)
Chap 5-40
Prentice-Hall, Inc.

Poisson Distribution Formula
−λ x

e λ
P( X) =
X!

where:
X = number of successes per unit
λ = expected number of successes per unit
e = base of the natural logarithm system (2.71828...)

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-41
Poisson Distribution
Characteristics




Mean

μ=λ

Variance and Standard Deviation

σ2 = λ
σ= λ
where λ = expected number of successes per unit

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-42
Using Poisson Tables
λ
X

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0
1
2
3
4
5
6
7

0.9048
0.0905
0.0045
0.0002
0.0000
0.0000
0.0000
0.0000

0.8187
0.1637
0.0164
0.0011
0.0001
0.0000
0.0000
0.0000

0.7408
0.2222
0.0333
0.0033
0.0003
0.0000
0.0000
0.0000

0.6703
0.2681
0.0536
0.0072
0.0007
0.0001
0.0000
0.0000

0.6065
0.3033
0.0758
0.0126
0.0016
0.0002
0.0000
0.0000

0.5488
0.3293
0.0988
0.0198
0.0030
0.0004
0.0000
0.0000

0.4966
0.3476
0.1217
0.0284
0.0050
0.0007
0.0001
0.0000

0.4493
0.3595
0.1438
0.0383
0.0077
0.0012
0.0002
0.0000

0.4066
0.3659
0.1647
0.0494
0.0111
0.0020
0.0003
0.0000

Example: Find P(X = 2) if λ = .50

e − λ λX e −0.50 (0.50)2
P( X = 2) =
=
= .0758
Statistics for Managers Using
X!
2!
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-43
Graph of Poisson Probabilities
0.70

Graphically:

0.60

λ = .50

0
1
2
3
4
5
6
Statistics
7

λ=
0.50

P(x)

X

0.50
0.40
0.30

0.6065
0.20
0.3033
0.10
0.0758
0.0126
0.00
0
1
0.0016
0.0002
0.0000
for Managers UsingP(X
0.0000

Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

2

3

4

5

6

7

x

= 2) = .0758
Chap 5-44
Poisson Distribution Shape
The shape of the Poisson Distribution
depends on the parameter λ :



λ = 0.50

λ = 3.00

0.70

0.25

0.60

0.20

0.15

0.40

P(x)

P(x)

0.50

0.30

0.10

0.20

0.05
0.10

0.00

0.00
0

1

2

3

4

5

6

7

x
Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

1

2

3

4

5

6

7

8

9

10

x

Chap 5-45

11

12
Poisson Distribution
in PHStat


Select:
PHStat / Probability & Prob. Distributions / Poisson…

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-46
Poisson Distribution
in PHStat


(continued)

Complete dialog box entries and get output …

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

P(X = 2) = 0.0758

Chap 5-47
Chapter Summary


Addressed the probability of a discrete random
variable



Defined covariance and discussed its
application in finance



Discussed the Binomial distribution



Discussed the Hypergeometric distribution



Reviewed the Poisson distribution

Statistics for Managers Using
Microsoft Excel, 4e © 2004
Prentice-Hall, Inc.

Chap 5-48

More Related Content

What's hot

Discrete probability distribution (complete)
Discrete probability distribution (complete)Discrete probability distribution (complete)
Discrete probability distribution (complete)
ISYousafzai
 
Discrete probability
Discrete probabilityDiscrete probability
Discrete probability
Ranjan Kumar
 
Basic Concept Of Probability
Basic Concept Of ProbabilityBasic Concept Of Probability
Basic Concept Of Probability
guest45a926
 

What's hot (20)

Discrete probability distribution (complete)
Discrete probability distribution (complete)Discrete probability distribution (complete)
Discrete probability distribution (complete)
 
Normal as Approximation to Binomial
Normal as Approximation to Binomial  Normal as Approximation to Binomial
Normal as Approximation to Binomial
 
Probability
ProbabilityProbability
Probability
 
The Normal Distribution and Other Continuous Distributions
The Normal Distribution and Other Continuous DistributionsThe Normal Distribution and Other Continuous Distributions
The Normal Distribution and Other Continuous Distributions
 
4.1-4.2 Sample Spaces and Probability
4.1-4.2 Sample Spaces and Probability4.1-4.2 Sample Spaces and Probability
4.1-4.2 Sample Spaces and Probability
 
Business Statistics Chapter 1
Business Statistics Chapter 1Business Statistics Chapter 1
Business Statistics Chapter 1
 
Introduction to Probability and Probability Distributions
Introduction to Probability and Probability DistributionsIntroduction to Probability and Probability Distributions
Introduction to Probability and Probability Distributions
 
Chap12 simple regression
Chap12 simple regressionChap12 simple regression
Chap12 simple regression
 
Random Variable
Random VariableRandom Variable
Random Variable
 
Chap04 basic probability
Chap04 basic probabilityChap04 basic probability
Chap04 basic probability
 
Geometric Distribution
Geometric DistributionGeometric Distribution
Geometric Distribution
 
Poisson probability distribution
Poisson probability distributionPoisson probability distribution
Poisson probability distribution
 
Discrete probability
Discrete probabilityDiscrete probability
Discrete probability
 
Basic Probability
Basic ProbabilityBasic Probability
Basic Probability
 
Introduction to Business Statistics
Introduction to Business StatisticsIntroduction to Business Statistics
Introduction to Business Statistics
 
Basic Concept Of Probability
Basic Concept Of ProbabilityBasic Concept Of Probability
Basic Concept Of Probability
 
Discrete random variable.
Discrete random variable.Discrete random variable.
Discrete random variable.
 
Basic concepts of probability
Basic concepts of probabilityBasic concepts of probability
Basic concepts of probability
 
Probability basics and bayes' theorem
Probability basics and bayes' theoremProbability basics and bayes' theorem
Probability basics and bayes' theorem
 
Probability And Probability Distributions
Probability And Probability Distributions Probability And Probability Distributions
Probability And Probability Distributions
 

Viewers also liked

Differences and similarities_of_discrete_probability_distributions
Differences and similarities_of_discrete_probability_distributionsDifferences and similarities_of_discrete_probability_distributions
Differences and similarities_of_discrete_probability_distributions
Jim-Screechie Entertainment
 

Viewers also liked (20)

Chap02 presenting data in chart & tables
Chap02 presenting data in chart & tablesChap02 presenting data in chart & tables
Chap02 presenting data in chart & tables
 
Chap06 normal distributions & continous
Chap06 normal distributions & continousChap06 normal distributions & continous
Chap06 normal distributions & continous
 
Probability Distributions for Discrete Variables
Probability Distributions for Discrete VariablesProbability Distributions for Discrete Variables
Probability Distributions for Discrete Variables
 
Discrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec domsDiscrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec doms
 
Probability Distributions for Continuous Variables
Probability Distributions for Continuous VariablesProbability Distributions for Continuous Variables
Probability Distributions for Continuous Variables
 
Poisson distribution
Poisson distributionPoisson distribution
Poisson distribution
 
Differences and similarities_of_discrete_probability_distributions
Differences and similarities_of_discrete_probability_distributionsDifferences and similarities_of_discrete_probability_distributions
Differences and similarities_of_discrete_probability_distributions
 
Advertising
AdvertisingAdvertising
Advertising
 
Clr model
Clr modelClr model
Clr model
 
Les5e ppt 04
Les5e ppt 04Les5e ppt 04
Les5e ppt 04
 
Chap01 intro & data collection
Chap01 intro & data collectionChap01 intro & data collection
Chap01 intro & data collection
 
Chap16 decision making
Chap16 decision makingChap16 decision making
Chap16 decision making
 
Chap11 chie square & non parametrics
Chap11 chie square & non parametricsChap11 chie square & non parametrics
Chap11 chie square & non parametrics
 
Experimental Methods in Mass Communication Research
Experimental Methods in Mass Communication ResearchExperimental Methods in Mass Communication Research
Experimental Methods in Mass Communication Research
 
Chap17 statistical applications on management
Chap17 statistical applications on managementChap17 statistical applications on management
Chap17 statistical applications on management
 
Chap08 fundamentals of hypothesis
Chap08 fundamentals of  hypothesisChap08 fundamentals of  hypothesis
Chap08 fundamentals of hypothesis
 
Confidence interval with Z
Confidence interval with ZConfidence interval with Z
Confidence interval with Z
 
Chap02 presenting data in chart & tables
Chap02 presenting data in chart & tablesChap02 presenting data in chart & tables
Chap02 presenting data in chart & tables
 
Accuracy in photojournalism
Accuracy in photojournalismAccuracy in photojournalism
Accuracy in photojournalism
 
Chap09 2 sample test
Chap09 2 sample testChap09 2 sample test
Chap09 2 sample test
 

Similar to Chap05 discrete probability distributions

Ch 4 Slides.doc655444444444444445678888776
Ch 4 Slides.doc655444444444444445678888776Ch 4 Slides.doc655444444444444445678888776
Ch 4 Slides.doc655444444444444445678888776
ohenebabismark508
 
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
blondellchancy
 
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
priestmanmable
 

Similar to Chap05 discrete probability distributions (20)

Bbs11 ppt ch05
Bbs11 ppt ch05Bbs11 ppt ch05
Bbs11 ppt ch05
 
Newbold_chap05.ppt
Newbold_chap05.pptNewbold_chap05.ppt
Newbold_chap05.ppt
 
Chap10 anova
Chap10 anovaChap10 anova
Chap10 anova
 
Two-sample Hypothesis Tests
Two-sample Hypothesis Tests Two-sample Hypothesis Tests
Two-sample Hypothesis Tests
 
Analysis of Variance
Analysis of VarianceAnalysis of Variance
Analysis of Variance
 
Decision Making in English
Decision Making in EnglishDecision Making in English
Decision Making in English
 
Probability and Statistics - Week 4
Probability and Statistics - Week 4Probability and Statistics - Week 4
Probability and Statistics - Week 4
 
ch04sdsdsdsdsdsdsdsdsdsdswewrerertrtr.ppt
ch04sdsdsdsdsdsdsdsdsdsdswewrerertrtr.pptch04sdsdsdsdsdsdsdsdsdsdswewrerertrtr.ppt
ch04sdsdsdsdsdsdsdsdsdsdswewrerertrtr.ppt
 
chap06-1.pptx
chap06-1.pptxchap06-1.pptx
chap06-1.pptx
 
Introduction to Multiple Regression
Introduction to Multiple RegressionIntroduction to Multiple Regression
Introduction to Multiple Regression
 
Decision Making for business leader in company
Decision Making for business leader in companyDecision Making for business leader in company
Decision Making for business leader in company
 
Probability distribution 2
Probability distribution 2Probability distribution 2
Probability distribution 2
 
Levine smume7 ch09 modified
Levine smume7 ch09 modifiedLevine smume7 ch09 modified
Levine smume7 ch09 modified
 
multiple regression model building
 multiple regression model building multiple regression model building
multiple regression model building
 
Ch 4 Slides.doc655444444444444445678888776
Ch 4 Slides.doc655444444444444445678888776Ch 4 Slides.doc655444444444444445678888776
Ch 4 Slides.doc655444444444444445678888776
 
Chap13 intro to multiple regression
Chap13 intro to multiple regressionChap13 intro to multiple regression
Chap13 intro to multiple regression
 
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
 
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
8. A 2 x 2 Experimental Design - Quality and Economy (x1 and x2.docx
 
Pattern Discovery - part I
Pattern Discovery - part IPattern Discovery - part I
Pattern Discovery - part I
 
Fundamentals of Testing Hypothesis
Fundamentals of Testing HypothesisFundamentals of Testing Hypothesis
Fundamentals of Testing Hypothesis
 

More from Uni Azza Aunillah

presentation listening and summarize
presentation listening and summarizepresentation listening and summarize
presentation listening and summarize
Uni Azza Aunillah
 
Etika bisnis dalam lingkungan produksi
Etika bisnis dalam lingkungan produksiEtika bisnis dalam lingkungan produksi
Etika bisnis dalam lingkungan produksi
Uni Azza Aunillah
 

More from Uni Azza Aunillah (14)

Chap15 time series forecasting & index number
Chap15 time series forecasting & index numberChap15 time series forecasting & index number
Chap15 time series forecasting & index number
 
Chap14 multiple regression model building
Chap14 multiple regression model buildingChap14 multiple regression model building
Chap14 multiple regression model building
 
Chap07 interval estimation
Chap07 interval estimationChap07 interval estimation
Chap07 interval estimation
 
Equation
EquationEquation
Equation
 
Saluran distribusi
Saluran distribusiSaluran distribusi
Saluran distribusi
 
Mengintegrasikan teori
Mengintegrasikan teoriMengintegrasikan teori
Mengintegrasikan teori
 
Kepemimpinen Dahlan Iskan
Kepemimpinen Dahlan IskanKepemimpinen Dahlan Iskan
Kepemimpinen Dahlan Iskan
 
presentation listening and summarize
presentation listening and summarizepresentation listening and summarize
presentation listening and summarize
 
Perbankan syariah
Perbankan syariahPerbankan syariah
Perbankan syariah
 
Uu bi no 3 tahun 2004
Uu bi no 3 tahun 2004Uu bi no 3 tahun 2004
Uu bi no 3 tahun 2004
 
Modul ekonomi moneter
Modul ekonomi moneterModul ekonomi moneter
Modul ekonomi moneter
 
Teori manajemen klasik
Teori manajemen klasikTeori manajemen klasik
Teori manajemen klasik
 
Proses pengawasan dalam manajemen
Proses pengawasan dalam manajemenProses pengawasan dalam manajemen
Proses pengawasan dalam manajemen
 
Etika bisnis dalam lingkungan produksi
Etika bisnis dalam lingkungan produksiEtika bisnis dalam lingkungan produksi
Etika bisnis dalam lingkungan produksi
 

Recently uploaded

Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
panagenda
 
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfBreaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
UK Journal
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Peter Udo Diehl
 

Recently uploaded (20)

Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
 
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
 
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
 
Demystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyDemystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John Staveley
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?
 
TopCryptoSupers 12thReport OrionX May2024
TopCryptoSupers 12thReport OrionX May2024TopCryptoSupers 12thReport OrionX May2024
TopCryptoSupers 12thReport OrionX May2024
 
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfBreaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
 
Enterprise Knowledge Graphs - Data Summit 2024
Enterprise Knowledge Graphs - Data Summit 2024Enterprise Knowledge Graphs - Data Summit 2024
Enterprise Knowledge Graphs - Data Summit 2024
 
Easier, Faster, and More Powerful – Notes Document Properties Reimagined
Easier, Faster, and More Powerful – Notes Document Properties ReimaginedEasier, Faster, and More Powerful – Notes Document Properties Reimagined
Easier, Faster, and More Powerful – Notes Document Properties Reimagined
 
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
 
Google I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGoogle I/O Extended 2024 Warsaw
Google I/O Extended 2024 Warsaw
 
Syngulon - Selection technology May 2024.pdf
Syngulon - Selection technology May 2024.pdfSyngulon - Selection technology May 2024.pdf
Syngulon - Selection technology May 2024.pdf
 
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
Integrating Telephony Systems with Salesforce: Insights and Considerations, B...
 
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and Planning
 
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
 

Chap05 discrete probability distributions

  • 1. Statistics for Managers Using Microsoft® Excel 4th Edition Chapter 5 Some Important Discrete Probability Distributions Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1
  • 2. Chapter Goals After completing this chapter, you should be able to:  Interpret the mean and standard deviation for a discrete probability distribution  Explain covariance and its application in finance  Use the binomial probability distribution to find probabilities  Describe when to apply the binomial distribution  Use the hypergeometric and Poisson discrete probability distributions to find probabilities Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-2
  • 3. Introduction to Probability Distributions  Random Variable  Represents a possible numerical value from an uncertain event Random Variables Ch. 5 Discrete Random Variable Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Continuous Random Variable Ch. 6 Chap 5-3
  • 4. Discrete Random Variables  Can only assume a countable number of values Examples:  Roll a die twice Let X be the number of times 4 comes up (then X could be 0, 1, or 2 times) Toss a coin 5 times. Let X be the number of heads (then X = Using Statistics for Managers0, 1, 2, 3, 4, or 5)  Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-4
  • 5. Discrete Probability Distribution Experiment: Toss 2 Coins. 4 possible outcomes T Let X = # heads. Probability Distribution T T H H Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. 1 2/4 = .50 1/4 = .25 Probability H 1/4 = .25 2 H Probability 0 T X Value .50 .25 0 1 2 X Chap 5-5
  • 6. Discrete Random Variable Summary Measures  Expected Value (or mean) of a discrete distribution (Weighted Average) N µ = E(X) = ∑ Xi P( Xi ) i=1  Example: Toss 2 coins, X = # of heads, compute expected value of X: X P(X) 0 .25 1 .50 2 .25 E(X) = (0 x .25) + (1 x .50) + (2 x .25) Statistics for Managers Using = 1.0 Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-6
  • 7. Discrete Random Variable Summary Measures (continued)  Variance of a discrete random variable N σ 2 = ∑ [Xi − E(X)]2 P(Xi ) i=1  Standard Deviation of a discrete random variable σ = σ2 = N [Xi − E(X)]2 P(Xi ) ∑ i=1 where: E(X) = Expected value of the Statistics for Managers Using discrete random variable X Xi = the ith outcome of X Microsoft Excel, 4e © 2004ith occurrence of X P(Xi) = Probability of the Prentice-Hall, Inc. Chap 5-7
  • 8. Discrete Random Variable Summary Measures (continued)  Example: Toss 2 coins, X = # heads, compute standard deviation (recall E(X) = 1) σ= ∑ [X − E(X)] P(X ) 2 i i σ = (0 − 1)2 (.25) + (1 − 1)2 (.50) + (2 − 1)2 (.25) = .50 = .707 Possible number of heads = 0, 1, or 2 Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-8
  • 9. The Covariance  The covariance measures the strength of the linear relationship between two variables  The covariance: N σ XY = ∑ [ Xi − E( X)][( Yi − E( Y )] P( Xi Yi ) i=1 where: X = discrete variable X Xi = the ith outcome of X Y = discrete variable Y Yi = the ith outcome of Y Statistics for Managers Using P(XiYi) = probability of occurrence of the condition affecting Microsoft Excel, 4e ©ith2004 of X and the ith outcome of Y the outcome Prentice-Hall, Inc. Chap 5-9
  • 10. Computing the Mean for Investment Returns Return per $1,000 for two types of investments P(XiYi) Economic condition Investment Passive Fund X Aggressive Fund Y .2 Recession - $ 25 - $200 .5 Stable Economy + 50 + 60 .3 Expanding Economy + 100 + 350 E(X) = μX = (-25)(.2) +(50)(.5) + (100)(.3) = 50 Statistics for Managers Using E(Y) = μY = (-200)(.2) +(60)(.5) + (350)(.3) = 95 Microsoft Excel, 4e © 2004 Chap 5-10 Prentice-Hall, Inc.
  • 11. Computing the Standard Deviation for Investment Returns P(XiYi) Economic condition Investment Passive Fund X Aggressive Fund Y .2 Recession - $ 25 - $200 .5 Stable Economy + 50 + 60 .3 Expanding Economy + 100 + 350 σ X = (-25 − 50)2 (.2) + (50 − 50)2 (.5) + (100 − 50)2 (.3) = 43.30 σ Y = (-200 − 95)2 (.2) + (60 − 95)2 (.5) + (350 − 95)2 (.3) Statistics for Managers Using = 193 71 Microsoft Excel, .4e © 2004 Chap 5-11 Prentice-Hall, Inc.
  • 12. Computing the Covariance for Investment Returns P(XiYi) Economic condition Investment Passive Fund X Aggressive Fund Y .2 Recession - $ 25 - $200 .5 Stable Economy + 50 + 60 .3 Expanding Economy + 100 + 350 σ X,Y = (-25 − 50)(-200 − 95)(.2) + (50 − 50)(60 − 95)(.5) + (100 − 50)(350 − 95)(.3) = 8250 Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-12
  • 13. Interpreting the Results for Investment Returns  The aggressive fund has a higher expected return, but much more risk μY = 95 > μX = 50 but σY = 193.21 > σX = 43.30 The Covariance of 8250 indicates that the two investments are positively related and will vary Statistics for Managers Using in the same 2004 Microsoft Excel, 4e © direction  Prentice-Hall, Inc. Chap 5-13
  • 14. The Sum of Two Random Variables  Expected Value of the sum of two random variables: E(X + Y) = E( X) + E( Y )  Variance of the sum of two random variables: Var(X + Y) = σ 2 + Y = σ 2 + σ 2 + 2σ XY X X Y  Standard deviation of the sum of two random variables: Statistics for Managers Using σ Microsoft Excel, 4e © 2004 X + Y = Prentice-Hall, Inc. σ2 +Y X Chap 5-14
  • 15. Portfolio Expected Return and Portfolio Risk  Portfolio expected return (weighted average return): E(P) = w E( X) + (1 − w ) E( Y )  Portfolio risk (weighted variability) σ P = w 2σ 2 + (1 − w )2 σ 2 + 2w(1 - w)σ XY X Y Where w = portion of portfolio Statistics for Managers Using value in asset X (1 - w) = portion of portfolio value in asset Y Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-15
  • 16. Portfolio Example Investment X: Investment Y: μX = 50 σX = 43.30 μY = 95 σY = 193.21 σXY = 8250 Suppose 40% of the portfolio is in Investment X and 60% is in Investment Y: E(P) = .4 (50) + (.6) (95) = 77 σ P = (.4)2 (43.30)2 + (.6)2 (193.21) 2 + 2(.4)(.6)(8250) = 133.04 Statistics for Managers Using The Excel, return and portfolio variability are between the values Microsoft portfolio 4e © 2004 for investments X and Y considered individually Chap 5-16 Prentice-Hall, Inc.
  • 17. Probability Distributions Probability Distributions Ch. 5 Discrete Probability Distributions Continuous Probability Distributions Binomial Normal Hypergeometric Ch. 6 Uniform Statistics for Poisson Using Managers Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Exponential Chap 5-17
  • 18. The Binomial Distribution Probability Distributions Discrete Probability Distributions Binomial Hypergeometric Statistics for Poisson Using Managers Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-18
  • 19. Binomial Probability Distribution  A fixed number of observations, n   Two mutually exclusive and collectively exhaustive categories     e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse e.g., head or tail in each toss of a coin; defective or not defective light bulb Generally called “success” and “failure” Probability of success is p, probability of failure is 1 – p Constant probability for each observation  e.g., Probability of getting a tail is the same each time we toss the coin Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-19
  • 20. Binomial Probability Distribution (continued)  Observations are independent   The outcome of one observation does not affect the outcome of the other Two sampling methods   Infinite population without replacement Finite population with replacement Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-20
  • 21. Possible Binomial Distribution Settings  A manufacturing plant labels items as either defective or acceptable  A firm bidding for contracts will either get a contract or not  A marketing research firm receives survey responses of “yes I will buy” or “no I will not” New job applicants either accept the offer Statistics for Managers Using or reject it  Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-21
  • 22. Rule of Combinations  The number of combinations of selecting X objects out of n objects is n n!  =  X  X! (n − X)!   where: n! =n(n - 1)(n - 2) . . . (2)(1) X! = X(X - 1)(X - 2) . . . (2)(1) Statistics for Managers 0! = 1 (by definition) Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-22
  • 23. Binomial Distribution Formula n! X n−X P(X) = p (1-p) X ! (n − X)! P(X) = probability of X successes in n trials, with probability of success p on each trial X = number of ‘successes’ in sample, (X = 0, 1, 2, ..., n) n = sample size (number of trials or observations) p = probability of “success” Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Example: Flip a coin four times, let x = # heads: n=4 p = 0.5 1 - p = (1 - .5) = .5 X = 0, 1, 2, 3, 4 Chap 5-23
  • 24. Example: Calculating a Binomial Probability What is the probability of one success in five observations if the probability of success is .1? X = 1, n = 5, and p = .1 P( X = 1) = n! p X (1 − p)n− X X! (n − X)! 5! = (.1)1(1 − .1)5−1 1 (5 − 1)! ! = (5)(.1)(.9)4 Statistics for Managers Using Microsoft Excel, 4e © 2004 = .32805 Prentice-Hall, Inc. Chap 5-24
  • 25. Binomial Distribution  The shape of the binomial distribution depends on the values of p and n Mean  Here, n = 5 and p = .1 .6 .4 .2 0 P(X) X 0  Here, n = 5 and p = .5 Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. .6 .4 .2 0 n = 5 p = 0.1 P(X) 1 2 3 4 5 n = 5 p = 0.5 X 0 1 2 3 4 5 Chap 5-25
  • 26. Binomial Distribution Characteristics   Mean μ = E(x) = np Variance and Standard Deviation σ = np(1 - p) 2 σ = np(1 - p) Where n = sample size p = probability Statistics for Managers of success Using (1 – p) = probability of failure Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-26
  • 27. Binomial Characteristics Examples μ = np Mean = (5)(.1) = 0.5 σ = np(1 - p) = (5)(.1)(1 − .1) = 0.6708 μ = np = (5)(.5) = 2.5 σ = np(1 - p) = (5)(.5)(1 − .5) Statistics for Managers Using = 1.118 Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. .6 .4 .2 0 P(X) X 0 .6 .4 .2 0 n = 5 p = 0.1 P(X) 1 2 3 4 5 n = 5 p = 0.5 X 0 1 2 3 4 5 Chap 5-27
  • 28. Using Binomial Tables n = 10 x … p=.20 p=.25 p=.30 p=.35 p=.40 p=.45 p=.50 0 1 2 3 4 5 6 7 8 9 10 … … … … … … … … … … … 0.1074 0.2684 0.3020 0.2013 0.0881 0.0264 0.0055 0.0008 0.0001 0.0000 0.0000 0.0563 0.1877 0.2816 0.2503 0.1460 0.0584 0.0162 0.0031 0.0004 0.0000 0.0000 0.0282 0.1211 0.2335 0.2668 0.2001 0.1029 0.0368 0.0090 0.0014 0.0001 0.0000 0.0135 0.0725 0.1757 0.2522 0.2377 0.1536 0.0689 0.0212 0.0043 0.0005 0.0000 0.0060 0.0403 0.1209 0.2150 0.2508 0.2007 0.1115 0.0425 0.0106 0.0016 0.0001 0.0025 0.0207 0.0763 0.1665 0.2384 0.2340 0.1596 0.0746 0.0229 0.0042 0.0003 0.0010 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 0.1172 0.0439 0.0098 0.0010 10 9 8 7 6 5 4 3 2 1 0 … p=.80 p=.75 p=.70 p=.65 p=.60 p=.55 p=.50 x Examples: n = 10, p = .35, x = 3: P(x = 3|n =10, p = .35) = .2522 Statistics for Managers Using n= Microsoft 10, p = .75, x =2004 P(x = 2|n =10, p = .75) = .0004 Excel, 4e © 2: Chap 5-28 Prentice-Hall, Inc.
  • 29. Using PHStat  Select PHStat / Probability & Prob. Distributions / Binomial… Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-29
  • 30. Using PHStat (continued)  Enter desired values in dialog box Here: n = 10 p = .35 Output for X = 0 to X = 10 will be generated by PHStat Optional check boxes Statistics for Managers Using for additional output Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-30
  • 31. PHStat Output P(X = 3 | n = 10, p = .35) = .2522 Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. P(X > 5 | n = 10, p = .35) = .0949 Chap 5-31
  • 32. The Hypergeometric Distribution Probability Distributions Discrete Probability Distributions Binomial Hypergeometric Statistics for Poisson Using Managers Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-32
  • 33. The Hypergeometric Distribution  “n” trials in a sample taken from a finite population of size N  Sample taken without replacement  Outcomes of trials are dependent  Concerned with finding the probability of “X” successes in the sample where there are “A” successes in the population Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-33
  • 34. Hypergeometric Distribution Formula  A  N − A      X  n − X   P( X) =   N   n    Where N = population size A = number of successes in the population N – A = number of failures in the population n = sample size Statistics for Managers Using X = number of successes in the sample Microsoft Excel, = number of failures in the sample n – X 4e © 2004 Prentice-Hall, Inc. Chap 5-34
  • 35. Properties of the Hypergeometric Distribution  The mean of the hypergeometric distribution is nA μ = E(x) = N  The standard deviation is nA(N - A) N - n σ= ⋅ 2 N N -1 Where N-n is called the “Finite Population Correction Factor” N -1 from Using Statistics for Managers sampling without replacement from a Microsoft Excel, 4efinite population © 2004 Chap 5-35 Prentice-Hall, Inc.
  • 36. Using the Hypergeometric Distribution ■ Example: 3 different computers are checked from 10 in the department. 4 of the 10 computers have illegal software loaded. What is the probability that 2 of the 3 selected computers have illegal software loaded? N = 10 A=4 n=3 X=2  A  N − A   4  6         X  n − X   2 1  (6)(6)  =    = P(X = 2) =   = 0.3 120 N 10      n  3      Statistics for Managers2Using 3 selected computers have illegal The probability that of the Microsoft Excel, 4e © .30, or 30%. software loaded is 2004 Chap 5-36 Prentice-Hall, Inc.
  • 37. Hypergeometric Distribution in PHStat  Select: PHStat / Probability & Prob. Distributions / Hypergeometric … Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-37
  • 38. Hypergeometric Distribution in PHStat (continued)  Complete dialog box entries and get output … N = 10 A=4 n=3 X=2 Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. P(X = 2) = 0.3 Chap 5-38
  • 39. The Poisson Distribution Probability Distributions Discrete Probability Distributions Binomial Hypergeometric Statistics for Poisson Using Managers Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-39
  • 40. The Poisson Distribution  Apply the Poisson Distribution when:  You wish to count the number of times an event occurs in a given area of opportunity  The probability that an event occurs in one area of opportunity is the same for all areas of opportunity  The number of events that occur in one area of opportunity is independent of the number of events that occur in the other areas of opportunity The probability that two or more events occur in an area of opportunity approaches zero as the area of Statisticsopportunity becomes smaller for Managers Using  MicrosoftThe average 2004 Excel, 4e © number of events per unit is λ (lambda) Chap 5-40 Prentice-Hall, Inc. 
  • 41. Poisson Distribution Formula −λ x e λ P( X) = X! where: X = number of successes per unit λ = expected number of successes per unit e = base of the natural logarithm system (2.71828...) Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-41
  • 42. Poisson Distribution Characteristics   Mean μ=λ Variance and Standard Deviation σ2 = λ σ= λ where λ = expected number of successes per unit Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-42
  • 44. Graph of Poisson Probabilities 0.70 Graphically: 0.60 λ = .50 0 1 2 3 4 5 6 Statistics 7 λ= 0.50 P(x) X 0.50 0.40 0.30 0.6065 0.20 0.3033 0.10 0.0758 0.0126 0.00 0 1 0.0016 0.0002 0.0000 for Managers UsingP(X 0.0000 Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. 2 3 4 5 6 7 x = 2) = .0758 Chap 5-44
  • 45. Poisson Distribution Shape The shape of the Poisson Distribution depends on the parameter λ :  λ = 0.50 λ = 3.00 0.70 0.25 0.60 0.20 0.15 0.40 P(x) P(x) 0.50 0.30 0.10 0.20 0.05 0.10 0.00 0.00 0 1 2 3 4 5 6 7 x Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. 1 2 3 4 5 6 7 8 9 10 x Chap 5-45 11 12
  • 46. Poisson Distribution in PHStat  Select: PHStat / Probability & Prob. Distributions / Poisson… Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-46
  • 47. Poisson Distribution in PHStat  (continued) Complete dialog box entries and get output … Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. P(X = 2) = 0.0758 Chap 5-47
  • 48. Chapter Summary  Addressed the probability of a discrete random variable  Defined covariance and discussed its application in finance  Discussed the Binomial distribution  Discussed the Hypergeometric distribution  Reviewed the Poisson distribution Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-48