Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

DH Poetry Modelling

971 views

Published on

Presentation of: DH Poetry Modelling: a quest for philological and technical standardization at the DH 2016 Conference in Krakow. The presentation is based on the research developed under the ERC project POSTDATA.
Authors:
Elena González-Blanco
Gimena Del Rio Riande
Clara Martínez Cantón

Published in: Education
  • Be the first to comment

  • Be the first to like this

DH Poetry Modelling

  1. 1. Elena González-Blanco (egonzalezblanco@flog.uned.es) Universidad Nacional de Educación a Distancia (UNED), Spain Gimena Del Rio Riande (gdelrio@conicet.gov.ar) Seminario de Edición y Crítica Textual (SECRIT-IIBICRIT CONICET), Argentina Clara Martínez Cantón (cimartinez@flog.uned.es) Universidad Nacional de Educación a Distancia (UNED), Spain DH Poetry Modelling: a quest for philological and technical standardization
  2. 2. Poetry Modelling. Why? Why modelling? Repertoires Goal Methodology Next steps
  3. 3. Poetry Modelling. Why? Why modelling? Repertoires Goal Methodology Next steps
  4. 4. Poetic features modelled for the print Why modelling? Repertoires Goal Methodology Next steps
  5. 5. Poetic features modelled for the print Why modelling? Repertoires Goal Methodology Next steps
  6. 6. Poetic features modelled for digital databases RPHA - Hungary BedT - Italy Cantigas Oxford MedDB2 – Galicia Analecta Hymnica LatinNaetebus - France ReMetCa - Spain Skaldic - Scandinavia Mirabile - Italia Why modelling? Repertoires Goal Methodology Next steps
  7. 7. So much knowledge… not connected! Why modelling? Repertoires Goal Methodology Next steps
  8. 8. Our goal Why modelling? Repertoires Goal Methodology Next steps
  9. 9. Model based on already existing digital models for poetry Latin poetry Spanish poetry Galician poetry Italian poetry French poetry Occitan poetry Why modelling? Repertoires Goal Methodology Next steps
  10. 10. Methodology  Classification of identifying and structuring fields  Identification of common fields  Normalisation of multivalued fields  Supression of redundant fields  Supression of non productive fields Next stepsWhy modelling? Repertoires Goal Methodology
  11. 11. Classification of fields Why modelling? Repertoires Goal Methodology Next stepsWhy modelling? Repertoires Goal Methodology
  12. 12. Identification common fields Masc/Fem Rhyme Remetca Cantigas de Santa María Database Le nouveau Naetebus Perfection of the rhymeRhyme Schema Isometrism Refrain Metrical schema Isostrophism Why modelling? Repertoires Goal Methodology Next steps
  13. 13. Identification of common fields Poem a b b a c d d c – ores -on -erra -anc,a 8 am|or|es am|or am|or|es ?8 7 cam|in|o de perd|ic|ion ?8 7 mart|ir|io sin gual|ard|on 8 de los trist|es am|ad|or|es 8 llen|os son mar|es e tierr|a d 8 de tu cru/el esp|er|anc|a h 8 qi/en en ti a conf|ianc|a 8 a tod|a sant|id|ad yerr|a Esquema rimático abababba schema_rimico -a b a b a a b b - Next stepsWhy modelling? Repertoires Goal Methodology Repertorio Métrico Digital de la Poesía Cancioneril del Siglo XV (Ana María Gómez Bravo) BedT: Bibliografia Elettronica dei Trovatori MedDB: Base de datos da Lírica Galego-Portuguesa
  14. 14. Syllable scansion Rhyme Schema Ends of rhymes Number of syllable per verse Normalisation of multivalued fields Poem a b b a c d d c – ores -on -erra -anc,a 8 am|or|es am|or am|or|es ?8 7 cam|in|o de perd|ic|ion ?8 7 mart|ir|io sin gual|ard|on 8 de los trist|es am|ad|or|es 8 llen|os son mar|es e tierr|a 8 de tu cru/el esp|er|anc|a 8 qi/en en ti a conf|ianc|a 8 a tod|a sant|id|ad yerr|a Next stepsWhy modelling? Repertoires Goal Methodology
  15. 15. Supression of redundant fields Syllable Signature 1x8@8 Poem a b b a c d d c – ores -on -erra -anc,a 8 am|or|es am|or am|or|es ?8 7 cam|in|o de perd|ic|ion ?8 7 mart|ir|io sin gual|ard|on 8 de los trist|es am|ad|or|es 8 llen|os son mar|es e tierr|a 8 de tu cru/el esp|er|anc|a 8 qi/en en ti a conf|ianc|a 8 a tod|a sant|id|ad yerr|a Why modelling? Repertoires Goal Methodology Next steps
  16. 16. Suppression of non-productive fields First Line Second Line Last Line amores amor amores camino de perdicion a toda santidad yerra Primeiro verso Falar quer' eu da senhor ben cousida Senhora, por amor de Dios Luis Vaasquez, depois que parti Desejoso muy sobejo Mia senhor, quen me vos guarda incipit Vilans dic qu'es de sen eissitz_ Why modelling? Repertoires Goal Methodology Next stepsWhy modelling? Repertoires Goal Methodology
  17. 17. Supression of non productive fields First Line Second Line Last Line amores amor amores camino de perdicion a toda santidad yerra Primeiro verso Falar quer' eu da senhor ben cousida Senhora, por amor de Dios Luis Vaasquez, depois que parti Desejoso muy sobejo Mia senhor, quen me vos guarda incipit Vilans dic qu'es de sen eissitz_ Why modelling? Repertoires Goal Methodology Next stepsWhy modelling? Repertoires Goal Methodology
  18. 18. Next Step Standardization to encode each field Syllable Signature 1x8@8 schema_metrico -08 08 08 08 08 10 10 10 - Esquema métrico 10' 10 10' 10 10' 10 10 10 10' Why modelling? Repertoires Goal Methodology Next steps
  19. 19. The end
  20. 20. Gimena del Río, CONICET, Argentina gdelrio.riande@gmail.com Clara Martínez, UNED cimartinez@flog.uned.es Elena González-Blanco, UNED egonzalezblanco@flog.uned.es

×