Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

『ビッグデータ時代を勝ち抜くデータマネジメント』 セミナー資料

4,072 views

Published on

『ビッグデータ時代を勝ち抜くデータマネジメント』 セミナー資料

  1. 1. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータ時代を勝ち抜く データマネジメント 基調講演 デジタルマーケティングにおける ビッグデータの調理(攻略)法 内野明彦
  2. 2. Copyright (C) , Akihiko Uchino All rights reserved. まずは、最近のトピックから ビッグデータ (BigData) 2 ゲノム解析 選挙予測 農業生産性向上 マーケティング活用 などなど スゴイ盛り上がり。 とにかくビッグデータだ!!
  3. 3. Copyright (C) , Akihiko Uchino All rights reserved. まずは、最近のトピックから ビッグデータ (BigData) 3 データサイエンティスト (Data Scientist) ゲノム解析 選挙予測 農業生産性向上 マーケティング活用 などなど 今もっとも○○○○ な仕事 25万人不足する? どうやったらなれる? そもそも何者? スゴイ盛り上がり。 とにかくビッグデータだ!! スゴイ盛り上がり。 でも実体がみえない。
  4. 4. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータ時代とは・・ ビッグデータを確保して、そこに優秀なデータサイエンティスト を連れてくれば、新たな収益が生まれるかというと?? 4 現状のビジネス展開 $ 現状の収益 さすがに、そんな簡単ではない 研究→開発→生産→流通→広告→販促→営業→販売→サポート→・・・ $× 新たな収益
  5. 5. Copyright (C) , Akihiko Uchino All rights reserved. 新たな収益源の確保ではなく、今の事業の更なる最適化・収益最大 化を『ビッグデータ』を用いて実現する事ができるはず。 但し、その推進のためにはこれまでには存在しなかった新しい職種であ る、『データサイエンティスト』が必要? 5 ビッグデータ時代とは・・ これが現実的な捉え方。 目的ではなく『手段』。 どこもまだ試行錯誤の段階。 $$ 研究→開発→生産→流通→広告→販促→営業→販売→サポート→・・・ 収益の増大
  6. 6. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータ時代に乗り遅れないためには・・ まだまだ成功パターンが多くはないので・・ 1)ビジネスのどの課題に効きそうかの当たりを付けて 2)ビッグデータから旨み(価値)を上手に抜き出して 3)今の事業・ビジネスの運用に上手に流し込んでいく 4)実際の運用を経て、そもそもの採算を見極めて 5)その推進ための仕組みと体制を確立する という段階的なステップが重要。 2)だけでは意味が無い。 6
  7. 7. Copyright (C) , Akihiko Uchino All rights reserved. データサイエンティストとは・・ • この段階的ステップの全体を指揮・推進するのが「データサイエン ティスト」だとすると、当然ながら、業務範囲はかなり広い。しかも 各要素に高次元のスキル・経験を求められる。超ハイスペック • 結果的に、得意分野により様々なタイプがいる状況 7 システム/DB スキル 統計/機械学習 スキル コンサル/PM スキル
  8. 8. Copyright (C) , Akihiko Uchino All rights reserved. デジタルマーケティングの特徴 ~最近注目のキーワード • 大量の『行動履歴明細データ』 ※購買前の検討行動履歴も確保可能 ※ただし、必ずしも量と質が比例している訳ではない 8
  9. 9. Copyright (C) , Akihiko Uchino All rights reserved. 『アクセス解析』ツール ~ウェブサイトへの訪問履歴が蓄積される 9 Cookie ID 参照元 URL MMCパラメータ 検索語 エントリー・ページ URL ページURL プロダクト ID プロダクト 名 価格 登録ID E メール・ アドレス 都道府県 名 6290934190113541225341 http://yahoo.co.jp/ banner_ad>yahoo>w intercampaign>001 http://coremetric s.cci.co.jp/?cm_ mmc=banner_a 6290934190113541225341 http://coremetrics.cci.co.jp/?cm_mmc=ba nner_ad-_-yahoo-_-wintercampaign-_- 6290934190113541225341 http://coremetrics.cci.co.jp/feature/feature .html 6290934190113541225341 http://google.co.jp/ listing>google>winter campaign>001 http://coremetric s.cci.co.jp/?cm_ 6290934190113541225341 http://coremetrics.cci.co.jp/?cm_mmc=list ing-_-google-_-wintercampaign-_-001 6290934190113541225341 http://coremetrics.cci.co.jp/product/analyt ics.html 6290934190113541225341 820 COREME TRICS 6290934190113541225341 http://search.yaho o.co.jp/search?p= コアメトリク ス http://coremetric s.cci.co.jp/produ 6290934190113541225341 http://coremetrics.cci.co.jp/product/analyt ics.html 6290934190113541225341 820 COREME TRICS 6290934190113541225341 http://coremetrics.cci.co.jp/product/cart/ 6290934190113541225341 820 COREME TRICS 30000 6290934190113541225341 http://coremetrics.cci.co.jp/product/registr ation/ 6290934190113541225341 s012345 aaa@sam ple TOKYO 6290934190113541225341 http://coremetrics.cci.co.jp/product/thank s.html 6290934190113541225341 820 COREME TRICS 30000 6290934190113541225341 mail>december>wint ercampaign>002 http://coremetric s.cci.co.jp/produ 6290934190113541225341 http://coremetrics.cci.co.jp/product/analyt ics2.html?cm_mmc=mail-_-december-_- 6290934190113541225341 600 EXPLOR E 10000 6290934190113541225341 http://coremetrics.cci.co.jp/product/cart/ 6290934190113541225341 600 EXPLOR E 10000 6290934190113541225341 http://coremetrics.cci.co.jp/product/thank s.html 6290934190113541225341 600 EXPLOR E 10000 バナー広告から訪問 ↓ 2ページ閲覧 ↓ 離脱リスティング広告から訪問 ↓ 2ページ閲覧 商品詳細ページ閲覧 ↓ 離脱 自然検索で訪問 ↓ 商品詳細ページ閲覧 ↓ カート投入 ↓ 会員登録 ↓ 商品購入 ↓ 離脱 メールマガジンから訪問 ↓ 商品詳細ページ閲覧 ↓ カート投入 ↓ 商品購入 ↓ 離脱 9
  10. 10. Copyright (C) , Akihiko Uchino All rights reserved. 各媒体社の 広告サーバ リスティング バナー ソーシャル ネットワーク アドネットワーク 広告主/広告代理店サイト 広告 広告 広告 広告 広告 一元管理 MediaMind 配信タグ 『第三者配信』ソリューション ~広告の接触履歴(広告閲覧&クリック)が蓄積される 第三者配信は、媒体社が保有するアドサーバではなく、まさしく第三者が保有する アドサーバから広告を配信します よって、配信設定、原稿管理、効果測定、レポーティングは第三者配信ベンダーの プラットフォームから行われます(在庫管理は行いません) 10
  11. 11. Copyright (C) , Akihiko Uchino All rights reserved. 顧客をとりまく「行動履歴明細データ」は急速に増加中 11 ユーザを取り巻く『データ』は今 後、急速に増加していく。入手 も出来る/しやすくなる・・ 営業接 触履歴 WEB購 入履歴 コールセ ンタ受 注履歴 パネル データ ウェブ サイト 行動履歴 広告接 触履歴 アンケー トデータ 店舗購 入履歴 顧客 属性 情報 メール 配信履 歴
  12. 12. Copyright (C) , Akihiko Uchino All rights reserved. デジタルマーケティングの特徴 ~最近注目のキーワード • 大量の『行動履歴明細データ』 ※購買前の検討行動履歴も確保可能 ※ただし、必ずしも量と質が比例している訳ではない 12 • 『カスタマージャーニー型』 分析 (複数データソースを顧客軸で一元化して分析を行う) ※複数チャネルを横断して検討するユーザ行動の 全体像を捉えないと効果が上がらない
  13. 13. Copyright (C) , Akihiko Uchino All rights reserved. http://www.fitch.com より引用 そもそも 「カスタマージャーニ-」 とは
  14. 14. Copyright (C) , Akihiko Uchino All rights reserved. http://www.fitch.com より引用 そもそも 「カスタマージャーニ-」 とは
  15. 15. Copyright (C) , Akihiko Uchino All rights reserved. 自分なりに言葉でまとめると・・ 『カスタマージャーニー』 顧客と企業とのあらゆる接点を時系列に見 通して、顧客との最初の接点から始まる一連 の体験ストーリー(直接接点、間接接点、 心理状態、態度変容など)をパターン化・可 視化し、「顧客の理解」や「ブランドの一貫性 の維持」、「顧客価値の最大化」などを行うた めの基盤/マップとなるモノ、もしくはそれらを 総称する概念。 15
  16. 16. Copyright (C) , Akihiko Uchino All rights reserved. デジタルマーケティングの特徴 ~最近注目のキーワード • 大量の『行動履歴明細データ』 ※購買前の検討行動履歴も確保可能 ※ただし、必ずしも量と質が比例している訳ではない • 『カスタマージャーニー型』 分析 (複数データソースを顧客軸で一元化して分析を行う) ※複数チャネルを横断して検討するユーザ行動の 全体像を捉えないと効果が上がらない 16 顧客行動の高精度予測 に必要なビッグデータ
  17. 17. Copyright (C) , Akihiko Uchino All rights reserved. デジタルマーケティングの特徴 ~最近注目のキーワード • 大量の『行動履歴明細データ』 ※購買前の検討行動履歴も確保可能 ※ただし、必ずしも量と質が比例している訳ではない • 『カスタマージャーニー型』 分析 (複数データソースを顧客軸で一元化して分析を行う) ※複数チャネルを横断して検討するユーザ行動の 全体像を捉えないと効果が上がらない • 『マーケティングオートメーション』 (マーケティング施策の自動運用化) 17 顧客行動の高精度予測 に必要なビッグデータ
  18. 18. Copyright (C) , Akihiko Uchino All rights reserved. 【出典】 Gartner Magic Quadrant for CRM Multi- channel Campaign Management 18
  19. 19. Copyright (C) , Akihiko Uchino All rights reserved. デジタルマーケティングの特徴 ~最近注目のキーワード • 大量の『行動履歴明細データ』 ※購買前の検討行動履歴も確保可能 ※ただし、必ずしも量と質が比例している訳ではない • 『カスタマージャーニー型』 分析 (複数データソースを顧客軸で一元化して分析を行う) ※複数チャネルを横断して検討するユーザ行動の 全体像を捉えないと効果が上がらない • 『マーケティングオートメーション』 (マーケティング施策の自動運用化) 19 顧客行動の高精度予測 に必要なビッグデータ 分析結果とアクションの 高速連動
  20. 20. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータによる高速 PDCAが実践フェーズに デジタルマーケティングの特徴 ~最近注目のキーワード • 大量の『行動履歴明細データ』 ※購買前の検討行動履歴も確保可能 ※ただし、必ずしも量と質が比例している訳ではない • 『カスタマージャーニー型』 分析 (複数データソースを顧客軸で一元化して分析を行う) ※複数チャネルを横断して検討するユーザ行動の 全体像を捉えないと効果が上がらない • 『マーケティングオートメーション』 (マーケティング施策の自動運用化) 20 顧客行動の高精度予測 に必要なビッグデータ 分析結果とアクションの 高速連動
  21. 21. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータによる高速PDCAのフロー 21 データ設計 データ確保・蓄積 データ統合・集積 データ加工 データ分析 データ可視化・意味化 事業へのインプリ (分析用データ確保) 効果検証 仕組化・自動化 システム/DB スキル 統計/機械学習 スキル コンサル/PM スキル 能動的に取得するデータそのものを企画・設計 部門を横断して複数の明細データを確保・蓄積 複数明細データを顧客軸で高度に連結・統合 分析上の視点からデータを加工(前処理) 一時的に分析用に特化したデータマートを構築 各種手法を駆使して、データを分析、意味を導く 実際の運用サイクルに(テスト的に)組み込む 分析データを可視化して、意味を導く 分析の費用対効果も含めての効果検証 モデルの構築なども含め、自動運用の仕組みを構築 必要とされるスキルセット
  22. 22. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータによる高速PDCAのフロー 22 データ設計 データ確保・蓄積 データ統合・集積 データ加工 データ分析 データ可視化・意味化 事業へのインプリ (分析用データ確保) 効果検証 仕組化・自動化 ・データベース ・DWH ・ETL ・データ マイニング ・BIツール ・可視化ツー ル ・マーケティン グオートメー ション ・EAI 能動的に取得するデータそのものを企画・設計 部門を横断して複数の明細データを確保・蓄積 複数明細データを顧客軸で高度に連結・統合 分析上の視点からデータを加工(前処理) 一時的に分析用に特化したデータマートを構築 各種手法を駆使して、データを分析、意味を導く 実際の運用サイクルに(テスト的に)組み込む 分析データを可視化して、意味を導く 分析の費用対効果も含めての効果検証 モデルの構築なども含め、自動運用の仕組みを構築 必要とされるシステム・アプリケーション
  23. 23. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータによる高速PDCAのフロー 23 データ設計 データ確保・蓄積 データ統合・集積 データ加工 データ分析 データ可視化・意味化 事業へのインプリ (分析用データ確保) 効果検証 仕組化・自動化 コンサル/PM スキル 能動的に取得するデータそのものを企画・設計 部門を横断して複数の明細データを確保・蓄積 複数明細データを顧客軸で高度に連結・統合 分析上の視点からデータを加工(前処理) 一時的に分析用に特化したデータマートを構築 各種手法を駆使して、データを分析、意味を導く 実際の運用サイクルに(テスト的に)組み込む 分析データを可視化して、意味を導く 分析の費用対効果も含めての効果検証 モデルの構築なども含め、自動運用の仕組みを構築 (コレまでの経験から) この領域で、高速PDCA成功のための 重要なポイントを2つ
  24. 24. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータによる高速PDCAのフロー 24 データ設計 データ確保・蓄積 データ統合・集積 データ加工 データ分析 データ可視化・意味化 事業へのインプリ (分析用データ確保) 効果検証 仕組化・自動化 システム/DB スキル 統計/機械学習 スキル コンサル/PM スキル 能動的に取得するデータそのものを企画・設計 部門を横断して複数の明細データを確保・蓄積 複数明細データを顧客軸で高度に連結・統合 分析上の視点からデータを加工(前処理) 一時的に分析用に特化したデータマートを構築 各種手法を駆使して、データを分析、意味を導く 実際の運用サイクルに(テスト的に)組み込む 分析データを可視化して、意味を導く 分析の費用対効果も含めての効果検証 モデルの構築なども含め、自動運用の仕組みを構築 【ポイント1】 高速PDCAの成功のためには・・ 従来型のシステム開発型のアプローチはNG 設計・ 開発 システム部門 運用 現場 部門 ・集計仕様がみえない ・分析してはじめてわかる ・毎回依頼していたら間に 合わない ・毎回依頼されても困る
  25. 25. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータによる高速PDCAのフロー 25 データ設計 データ確保・蓄積 データ統合・集積 データ加工 データ分析 データ可視化・意味化 事業へのインプリ (分析用データ確保) 効果検証 仕組化・自動化 システム/DB スキル 統計/機械学習 スキル コンサル/PM スキル 能動的に取得するデータそのものを企画・設計 部門を横断して複数の明細データを確保・蓄積 複数明細データを顧客軸で高度に連結・統合 分析上の視点からデータを加工(前処理) 一時的に分析用に特化したデータマートを構築 各種手法を駆使して、データを分析、意味を導く 実際の運用サイクルに(テスト的に)組み込む 分析データを可視化して、意味を導く 分析の費用対効果も含めての効果検証 モデルの構築なども含め、自動運用の仕組みを構築 【ポイント1】 高速PDCAの成功のためには・・ 従来型のシステム開発型のアプローチはNG 設計・ 開発 システム部門 運用 現場 部門 運用 (システム部門 + 現場部門) ・分析側、実施側が主導権と実 行環境を持つ必要がある ・『エンドユーザーETL』が重要
  26. 26. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータによる高速PDCAのフロー 26 データ設計 データ確保・蓄積 データ統合・集積 データ加工 データ分析 データ可視化・意味化 事業へのインプリ (分析用データ確保) 効果検証 仕組化・自動化 コンサル/PM スキル 能動的に取得するデータそのものを企画・設計 部門を横断して複数の明細データを確保・蓄積 複数明細データを顧客軸で高度に連結・統合 分析上の視点からデータを加工(前処理) 一時的に分析用に特化したデータマートを構築 各種手法を駆使して、データを分析、意味を導く 実際の運用サイクルに(テスト的に)組み込む 分析データを可視化して、意味を導く 分析の費用対効果も含めての効果検証 モデルの構築なども含め、自動運用の仕組みを構築 【ポイント2】 高速PDCAの成功のためには・・ 分析者の思考が分断されてしまう集計速度はNG 思考が分断(ミー ティングベース、依 頼ベース)になっ た瞬間に分析の 意味・価値が薄 まってしまう
  27. 27. Copyright (C) , Akihiko Uchino All rights reserved. ビッグデータによる高速PDCAのフロー 27 データ設計 データ確保・蓄積 データ統合・集積 データ加工 データ分析 データ可視化・意味化 事業へのインプリ (分析用データ確保) 効果検証 仕組化・自動化 コンサル/PM スキル 能動的に取得するデータそのものを企画・設計 部門を横断して複数の明細データを確保・蓄積 複数明細データを顧客軸で高度に連結・統合 分析上の視点からデータを加工(前処理) 一時的に分析用に特化したデータマートを構築 各種手法を駆使して、データを分析、意味を導く 実際の運用サイクルに(テスト的に)組み込む 分析データを可視化して、意味を導く 分析の費用対効果も含めての効果検証 モデルの構築なども含め、自動運用の仕組みを構築 【ポイント2】 高速PDCAの成功のためには・・ 分析者の思考が分断されてしまう分析環境はNG 高速 (秒速) 回転 数千万件のデータを 高速に(理想的には、 秒単位で)処理して 欲しい・・ ひと昔前では夢物語 だったが・・
  28. 28. Copyright (C) , Akihiko Uchino All rights reserved. まとめ 28 デジタルマーケティングにおける ビッグデータの調理(攻略)法
  29. 29. Copyright (C) , Akihiko Uchino All rights reserved. まとめ • まず広大な農場から良質な素材を選ぶところからスタート • 食べられない雑草も結構混ざっているので、選り分けるのセンスと経験 • 次に、良さそうな素材を持ってきて丁寧に下ごしらえ • 中にはクセが強くてすごく時間がかかる素材もあるけど、そこはガマン • さらには、はじめての素材も多いので、どう準備していいかは味見してみないとわからないことも多々 • どう盛りつけるか?どう組み合わせるか?どういう順番でだすか? 「接客」目線も大事 • 実は、すぐとなりには試食してくれるお客様がいるので、その反応を見ながら、色々試行錯誤 • 時にはその場で農場に戻って、新しい素材を持ってくることも • 調理にはもちろんいい厨房と器具も大事。切れ味が良くなければ時間がかかってしまう • 調理時間はすごく重要。新鮮な状態で手際よく調理しないと、台無しになってしまう • 素材の吟味と丁寧な下準備、調理、盛り付け、全部が組み合わさった時、最高の結果になる • 食べているお客様の喜んでいる様子を見ると、最高に嬉しい • お客様の好みや味に変わりがないか、満足してくれているかはいつも気にしている • もちろん、値段と、手間・コストも常に意識し、最終的に利益を確保することがミッション 29 デジタルマーケティングにおける ビッグデータの調理(攻略)法
  30. 30. Copyright (C) , Akihiko Uchino All rights reserved. ご静聴ありがとうございました 30 ご意見・ご質問などは下記まで uchino0308@gmail.com 内野明彦

×