Thermal Group


Published on

Published in: Business

Thermal Group

  1. 1. Thermal Turbomachines<br />History, Types and Uses<br />
  2. 2. Contents<br />Fans and Blowers<br />Compressors<br />Steam Turbines<br />Gas Turbines<br />2<br />
  3. 3. Fans and Blowers<br />Team Members:<br />Ghada Zobeir<br />Nouran Ezz El Din<br />Nervien Islam<br />3<br />Fans and Blowers<br />
  4. 4. Contents<br />Definition<br />History<br />Components<br />Fans<br />Performance Parameters<br />Blowers<br />4<br />Fans and Blowers<br />
  5. 5. Definition<br />Fan: An mechanically powered device used to produce an airflow (compression ratio ~1.1)<br />Blower: A high pressure fan (compression ratio 1.11.2)<br />5<br />Fans and Blowers<br />
  6. 6. History<br />Omar-RajeenJumala 1st working mechanical fan (1832)<br />1st mechanical fan  Punkah Fan (Middle East 19th century)<br />Nicola Tesla (AC) and Thomas Edison (DC)  Electric Power  Electric Fans and blowers<br />6<br />Fans and Blowers<br />
  7. 7. Components<br />Impeller or Rotor: A series of radial blades attached to a hub which creates the pressure difference.<br />Motor: provides mechanical power to rotate the blades.<br />Housing: Enclosure that protects the components.<br />7<br />Fans and Blowers<br />
  8. 8. Fans<br />Centrifugal Fans<br />Axial Fans<br />8<br />Fans and Blowers<br />
  9. 9. Centrifugal Fans<br />They throw air away from the blade tips.<br />3 types<br />Radial Blade<br />Forward Curved Blade<br />Backward Curved Blade<br />9<br />Fans and Blowers<br />
  10. 10. Axial Fans<br />They force the air to move parallel to the rotating shaft.<br />3 types<br />Propeller Fans<br />Tube Axial Fans<br />Vane Axial Fans<br />10<br />Fans and Blowers<br />
  11. 11. Comparison<br />11<br />Fans and Blowers<br />
  12. 12. Performance Parameters<br />12<br />Fans and Blowers<br />
  13. 13. Blowers<br />Centrifugal<br />Centrifugal blowers look more like centrifugal pumps than fans. The impeller is typically gear-driven and rotates as fast as 15,000 rpm.<br />Positive Displacement<br />Positive displacement blowers have rotors, which &quot;trap&quot; air and push it through housing<br />13<br />Fans and Blowers<br />
  14. 14. Compressors<br />Team Members<br />Karim Ehab<br />Mohamed El Laithy<br />EmanSaudi<br />Mahmoud Ali Fouad<br />14<br />Compressors<br />
  15. 15. Contents<br />Definition<br />Types<br />15<br />Compressors<br />
  16. 16. Definition<br />Compressors: Mechanically powered gas mover with pressure ratio &gt;1.2<br />16<br />Compressors<br />
  17. 17. Types<br />17<br />Compressors<br />
  18. 18. Centrifugal Compressors (Dynamic)<br />Design<br />Impeller (rotating vanes)  similar to centrifugal fan (mostly backward curved blade fan)<br />Housing  mounted static vanes (diffusers)<br />18<br />Compressors<br />
  19. 19. Centrifugal Compressors (Dynamic)<br />Advantages<br />High mass flow rate<br />Oil free gas flow (Good Sealing)<br />Low Life Cycle Cost (LCC) (High Reliability)<br />High Efficiency<br />Max compression ratio of 10:1<br />19<br />Compressors<br />
  20. 20. Centrifugal Compressors (Dynamic)<br />Disadvantages<br />Fixed head for all gases, and variable pressure ratio for each gas. (Not used with Molecular weight less than 10 due to very low pressure ratio).<br />Needs multi-stage configuration for higher pressure ratio.<br />20<br />Compressors<br />
  21. 21. Axial Compressors (Dynamic)<br />Design<br />Rotor with successive rows of blades<br /> Stator blades  diffusers, remove swirl, maintain axial flow<br />Blade aerodynamic design  max thrust, min drag<br />21<br />Compressors<br />
  22. 22. Axial Compressors (Dynamic)<br />Advantages<br />Higher efficiency than centrifugal compressors (+ 8~10%)<br />Small frontal area<br />High pressure rise<br />Compression ratio of 1.15-1.6 per stage<br />Disadvantages<br />High cost<br />High weight<br />High starting requirements<br />22<br />Compressors<br />
  23. 23. Positive Displacement Compressors<br />Sliding vane compressor<br />23<br />Compressors<br />
  24. 24. Positive Displacement Compressors<br />Lobe compressor<br />24<br />Compressors<br />
  25. 25. Positive Displacement Compressors<br />Screw compressor<br />25<br />Compressors<br />
  26. 26. Positive Displacement Compressors<br />Reciprocating compressor<br />26<br />Compressors<br />
  27. 27. Steam Turbines<br />Team Members<br />Amr Ibrahim<br />Rasha Kamal<br />Dina El Naggar<br />YahiaSowylam<br />27<br />Steam Turbines<br />
  28. 28. Contents<br />Definition<br />History<br />Design<br />Types<br />Uses<br />28<br />Steam Turbines<br />
  29. 29. Definition<br />A steam turbine is a mechanical device that extracts thermal energy from pressurized steam, and converts it into rotary motion<br />29<br />Steam Turbines<br />
  30. 30. History<br />Hero of Alexandria’s Aeolipile (reaction turbine)<br />30<br />Steam Turbines<br />
  31. 31. History<br />Sir Charles Parsons  modern steam turbine  1884  7.5 kW of electricity.<br />7.5 kW  50,000 kW<br />31<br />Steam Turbines<br />
  32. 32. Design<br />One set of stationary blades is connected to the casing<br />One set of rotating blades is connected to the shaft<br />32<br />Steam Turbines<br />
  33. 33. Types<br />Steam Turbines are classified according to:<br />Steam Supply and Exhaust Conditions<br />Casing or Shaft Arrangements<br />N.B. Other types are stated in the gas turbine section.<br />33<br />Steam Turbines<br />
  34. 34. Steam Supply and Exhaust Conditions<br />Condensing: most electrical power plants<br />Non-condensing (backpressure turbines): use exhaust steam in other processes (heating units, pulp and paper plants, desalination facilities)<br />34<br />Steam Turbines<br />
  35. 35. Steam Supply and Exhaust Conditions<br />Reheat turbine: reheat high pressure exhaust to operate a low pressure turbine.<br />35<br />Steam Turbines<br />
  36. 36. Casing or Shaft Arrangements<br />Single casing units: single casing and shaft are coupled to a generator<br />Tandem compound: two or more casings are directly coupled together to drive a single generator<br />Cross compound arrangement: two or more shafts not in line driving two or more generators that often operate at different speeds. Typically used for many large applications<br />36<br />Steam Turbines<br />
  37. 37. Uses<br />Steam turbines are used for the generation of electricity in thermal power plants, such as plants using coal or fuel oil or nuclear power<br />37<br />Steam Turbines<br />
  38. 38. Uses<br />Steam turbines may be used in combined cycles with a steam generator <br />38<br />Steam Turbines<br />
  39. 39. Uses<br />Steam turbines are used as drivers for large ships<br />39<br />Steam Turbines<br />
  40. 40. Gas Turbine<br />Team Members:<br />Mahmoud Koraïem<br />Mohamed El Mohasseb<br />AmrSerry<br />40<br />Gas Turbine<br />
  41. 41. Contents<br />Definition<br />History<br />Types and design<br />Applications<br />41<br />Gas Turbine<br />
  42. 42. Definition<br />Compressor, combustion chamber and turbine arrangement.<br />Working fluid is air (compressor), air + combustion products (turbine)<br />42<br />Gas Turbine<br />
  43. 43. History<br />1500  Leonardo Da Vinci  chimney jack<br />43<br />Gas Turbine<br />
  44. 44. History<br />1791  John Barber designed (UK) 1st gas turbine engine  uses a compressor, combustion chamber, and a turbine (patent only)<br />44<br />Gas Turbine<br />
  45. 45. History<br />1872 - 1904  F. Stolze designed (Germany)  gas turbine with axial compressor (no useful power)<br />1906  ArmengaudLemale (France) centrifugal compressor (no useful power)<br />The lack of advanced knowledge of aerodynamic was the reason for the failure.<br />45<br />Gas Turbine<br />
  46. 46. History<br />1910 HanzHolzwarth (Germany)  constant volume combustion (150 kW)<br />46<br />Gas Turbine<br />
  47. 47. Types and Design<br />Axial gas turbine<br />Radial gas turbine<br />Bladeless gas turbine<br />(the difference is in the turbine stage only)<br />47<br />Gas Turbine<br />
  48. 48. Axial Gas Turbines<br />Most common type<br />Easy multi-staging high overall pressure ratio<br />Wide range of applications<br />48<br />Gas Turbine<br />
  49. 49. Axial Gas Turbines<br />Can be either impulse (Rateau, Curtis) turbine or reaction (Parson’s) type<br />Rateau  stationary blades = nozzles<br />Curtis  1 nozzle (rest is anti-swirl)<br />49<br />Gas Turbine<br />
  50. 50. Axial Gas Turbines<br />Rateau  stationary blades = nozzles<br />50<br />Gas Turbine<br />
  51. 51. Axial Gas Turbines<br />Curtis  1 nozzle (rest is anti-swirl)<br />51<br />Gas Turbine<br />
  52. 52. Axial Gas Turbines<br />Parson’s  reaction turbine<br />52<br />Gas Turbine<br />
  53. 53. Axial Gas Turbines<br />Blades  air cooled<br />Superalloys  transition elements (Ni, Fe, Co) alloys are used with (Al, Ti or Nb) in FCC crystals<br />53<br />Gas Turbine<br />
  54. 54. Radial Gas Turbines<br />High pressure ratio per stage<br />Hard to multi-stage<br />Very Compact size<br />More efficient for small mass flow rate<br />Lower Thermal stresses (no need for air cooling)<br />54<br />Gas Turbine<br />
  55. 55. Bladeless Turbine (Tesla’s)<br />Uses adhesive force of inlet gas to turn the disks<br />Ideal for extremely small flow applications<br />Efficiency (60~95%)<br /> (steam turbine’s 80~98%)<br />55<br />Gas Turbine<br />
  56. 56. Applications<br />Turboshaft engine (used in locomotive)<br />56<br />Gas Turbine<br />
  57. 57. Applications<br />Turboprop engine<br />57<br />Gas Turbine<br />
  58. 58. Applications<br />Turbofan engine<br />58<br />Gas Turbine<br />
  59. 59. Applications<br />Turbojet engine<br />59<br />Gas Turbine<br />
  60. 60. Applications<br />Combined power cycle (Gas turbine, steam turbine)<br />N.B. Advances in gas turbines are mainly dependant on cooling technology (axial), and compressor design (Wc = 60% Wt)<br />60<br />Gas Turbine<br />
  61. 61. Any Questions?<br />61<br />Fans and Blowers<br />