Unipolar Stepping Motor Drive Circuit Simulation
PSpice Version
VCC VCC VCC VCC
CLK
D1 Vcc
R1 U9 DIODE 12
CLK
1k FA S1 A A B
FA
+ +
0 U5
- - RON = {RON} Acom Bcom 0
/FA S
AND REF
+ 0 /A /B
/FB
- +
- U1
UNI-POLAR_STEP_MOTR
FB FB.
VCC L = 2.5M
HY S_I-CTRL R = 4.2
U10 VHY S = {VHY S} D2
1-PHASE U8 I_SET = {I_SET} DIODE
PPS = 100 /FA S2 /A
+ +
- -
U4 RON = {RON}
S
AND REF
+ 0
- +
-
FB.
VCC
HY S_I-CTRL
VHY S = {VHY S} D3
U7 I_SET = {I_SET} DIODE
/FB S3 /B
+ +
- -
U3 RON = {RON}
S
AND REF
+ 0
- +
-
FB.
VCC
HY S_I-CTRL
VHY S = {VHY S} D4
U6 I_SET = {I_SET} DIODE
FB S4 B
+ +
U2
- - RON = {RON}
S
AND REF
+ 0
- +
-
FB.
HY S_I-CTRL
VHY S = {VHY S}
PARAMETERS: I_SET = {I_SET} PARAMETERS:
I_SET = 0.5 RON = 10m
VHY S = 0.1
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 1
Unipolar Stepping Motor Drive Circuit
Contents
1. Concept of Simulation
2. Unipolar Stepping Motor Drive Circuit
3. Unipolar Stepping Motor
4. Switches
5. Signal Generator
6. Hysteresis-Based Current Controller
7. Unipolar Stepping Motor Drive Circuit (Example)
7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
8. Drive Circuit Efficiency
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 2
1.Concept of Simulation
Block Diagram:
Control Unit Driver Unit: Switches Stepping
(e.g. Microcontroller)
(e.g. Hysteresis- (e.g. FET, Motor
Based Controller) Diode)
Sequence:
Parameter:
• One-Phase
Parameter: Parameter: •L
• Two-Phase
• I_SET • Ron •R
• Half-Step
• HYS
Models:
U2 VCC
CLK CLK CLK
FA FA FA FA
Ctrl_A A B
D1
DIODE
/FA /FA /FA
AND
U1 S1 Acom Bcom
Ctrl_A + + A
/FB /FB /FB REF
+ - - RON = 10m
S
/A /B
FB FB FB - +
-
U?
U? U? U?
FB. 0 UNI-POLAR_STEP_MOTR
1-PHASE 2-PHASE HALF-STEP HY S_I-CTRL L = 2.5M
PPS = 100 PPS = 100 PPS = 100 VHY S = {VHY S} R = 4.2
I_SET = {I_SET}
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 3
2.Unipolar Stepping Motor Drive Circuit
Signal generator Hysteresis Based Current Switches Unipolar Stepping Motor Supply Voltage
CLK
Controller VCC VCC VCC VCC
D1 Vcc
R1 U9 DIODE 12
CLK
1k FA S1 A A B
FA
+ +
0 U5
- - RON = {RON} Acom Bcom 0
/FA S
AND REF
+ 0 /A /B
/FB
- +
- U1
UNI-POLAR_STEP_MOTR
FB FB.
VCC L = 2.5M
HY S_I-CTRL R = 4.2
U10 VHY S = {VHY S} D2
1-PHASE U8 I_SET = {I_SET} DIODE
PPS = 100 /FA S2 /A
+ +
- -
U4 RON = {RON}
S
AND REF
+ 0
- +
-
FB.
VCC
HY S_I-CTRL
VHY S = {VHY S} D3
U7 I_SET = {I_SET} DIODE
/FB S3 /B
+ +
- -
U3 RON = {RON}
S
AND REF
+ 0
- +
-
FB.
VCC
HY S_I-CTRL
VHY S = {VHY S} D4
U6 I_SET = {I_SET} DIODE
FB S4 B
+ +
U2
- - RON = {RON}
S
AND REF
+ 0
- +
-
FB.
HY S_I-CTRL
VHY S = {VHY S}
PARAMETERS: I_SET = {I_SET} PARAMETERS:
I_SET = 0.5 RON = 10m
VHY S = 0.1
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 4
3.Unipolar Stepping Motor
A B • The electrical equivalent circuit of each phase consists
of an inductance of the phase winding series with
Acom Bcom resistance.
/A /B • The inductance is ideal (without saturation
U1
characteristics and the mutual inductance between
UNI-POLAR_STEP_MOTR phases)
L = 2.5M
R = 4.2 • The motor back EMF is set as zero to simplified the
model parameters extraction.
Input the inductance and resistance values (parameter: L, R) of the
stepping motor, that are usually provided by the manufacturer datasheet,
to generally model the phase winding.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 5
4.Switches
VCC
• A near-ideal DIODE can be modeled by using spice
D1
primitive model (D), which parameter: N=0.01
DIODE
RS=0.
S1
Ctrl_A + + A
- - RON = 10m
S • A near-ideal MOSFET can be modeled by using
0
PSpice VSWITCH that is voltage controlled switch.
The parameter RON represents Rds(on) characteristics of
MOSFET, that are usually provide by the manufacturer datasheet.
The value could be about 10m to 10 ohm.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 6
5.Signal Generator
The signal generators are used as a microcontroller capable of generating step pulses
and direction signals for the driver.
There are 3 useful stepping sequences to control unipolar stepping motor
One-Phase (Wave Drive)
CLK
FA
CLK
FA
CLK
FA • Consumes the least power.
/FA /FA /FA
• Assures the accuracy regardless of the winding imbalance.
/FB /FB /FB
FB FB FB
Two-Phase (Hi-Torque)
U? U? U?
• Energizes 2 phases at the same time.
1-PHASE 2-PHASE HALF-STEP
PPS = 100 PPS = 100 PPS = 100 • Offers an improved torque-speed result and greater holding torque.
Input PPS (Pulse Per Second) as a clock pulse speed(frequency).
Half-Step
• Doubles the stepping resolution of the motor.
• Reduces motor resonance which could cause a motor to stall at a resonant frequency.
• Please note that this sequence is 8 steps.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 7
5.1 One-Phase Sequence
5.0V
Clock
2.5V
0V
V(CLK)
5.0V
Phase A2.5V
ON
0V
V(FA)
5.0V
Phase /A
2.5V
ON
0V
V(/FA)
5.0V
Phase B2.5V ON
0V
V(FB)
5.0V
Phase /B
SEL>> ON
0V
0s 40ms 80ms
V(/FB)
1 Sequence Time
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 8
5.2 Two-Phase Sequence
5.0V
Clock
2.5V
0V
V(CLK)
5.0V
Phase A2.5V
ON
0V
V(FA)
5.0V
Phase /A
2.5V
ON
0V
V(/FA)
5.0V
Phase B2.5V ON
0V
V(FB)
5.0V
Phase /B
SEL>> ON ON
0V
0s 40ms 80ms
V(/FB)
1 Sequence Time
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 9
5.3 Half-Step Sequence
Clock 4.0V
2.0V
0V
V(CLK)
5.0V
Phase A2.5V
ON
0V
V(FA)
5.0V
Phase /A
2.5V
ON
0V
V(/FA)
5.0V
Phase B2.5V ON
0V
V(FB)
5.0V
Phase /B
SEL>> ON
0V
0s 80ms 160ms
V(/FB)
1 Sequence Time
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 10
6.Hysteresis-Based Current Controller
U2
FA • Controlled by the signal from the
Ctrl_A
microcontroller.
AND
U1
• Generate the switch (MOSFET) drive signal
REF
+
- +
-
by comparing the measured phase current
FB. with their references.
HY S_I-CTRL
VHY S = 0.1
I_SET = 0.5
Input the reference value at the I_SET (e.g. I_SET=0.5A)
to set the regulated current level. The hysteresis
current value is set at the VHYS (e.g. VHYS=0.1A).
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 11
7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
VCC VCC VCC VCC
CLK
D1 Vcc
R1 U9 DIODE 12
CLK
1k FA S1 A A B
FA
+ +
0 U5
- - RON = {RON} Acom Bcom 0
/FA S
AND REF
+ 0 /A /B
/FB
- +
- U1
UNI-POLAR_STEP_MOTR
FB FB.
VCC L = 2.5M
HY S_I-CTRL R = 4.2
U10 VHY S = {VHY S} D2
1-PHASE U8 I_SET = {I_SET} DIODE
PPS = 100 /FA S2 /A
+ +
- -
U4 RON = {RON}
S
One-Phase AND
+
REF
0
Step Sequence - +
Generator (100
-
FB.
VCC
pps) HY S_I-CTRL
VHY S = {VHY S} D3
U7 I_SET = {I_SET} DIODE
/FB S3 /B
+ +
- -
U3 RON = {RON}
S
AND REF
+ 0
- +
-
FB.
VCC
HY S_I-CTRL
VHY S = {VHY S} D4
U6 I_SET = {I_SET} DIODE
FB S4 B
+ +
U2
- - RON = {RON}
S
AND REF
+ 0
- +
-
FB.
HY S_I-CTRL
VHY S = {VHY S} *Analysis directives:
PARAMETERS: I_SET = {I_SET} PARAMETERS:
I_SET = 0.5
VHY S = 0.1
RON = 10m .TRAN 0 40ms 0 10u
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 12
8.Drive Circuit Efficiency (%)
VCC VCC VCC VCC
CLK
D1 Vcc
R1 U9 DIODE 12
CLK
1k FA S1 A A B
FA W
+ +
0 U5
- - RON = {RON} Acom Bcom 0
/FA S
AND REF
+ 0 /A
W
/B
/FB
- +
- U1
UNI-POLAR_STEP_MOTR
FB FB.
VCC L = 2.5M
HY S_I-CTRL R = 4.2
U10 VHY S = {VHY S} D2
1-PHASE U8 I_SET = {I_SET} DIODE
PPS = 100 /FA S2 /A
+ +
- -
U4 RON = {RON}
S
Half-Phase AND
+
REF
0
Step Sequence - +
Generator (100
-
FB.
VCC
pps) HY S_I-CTRL
VHY S = {VHY S} D3
U7 I_SET = {I_SET} DIODE
/FB S3 /B
+ +
- -
U3 RON = {RON}
S
AND REF
+ 0
- +
-
FB.
VCC
HY S_I-CTRL
VHY S = {VHY S} D4
U6 I_SET = {I_SET} DIODE
FB S4 B
+ +
U2
- - RON = {RON}
S
AND REF
+ 0
- +
-
FB.
HY S_I-CTRL
VHY S = {VHY S} *Analysis directives:
PARAMETERS: I_SET = {I_SET} PARAMETERS:
I_SET = 0.5 RON = 10m .TRAN 0 40ms 0ms 10u SKIPBP
VHY S = 0.1
.STEP PARAM RON LIST 10m, 100m, 1
.OPTIONS ITL4= 40
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 18
8.Drive Circuit Efficiency (%)
100
at switches Ron = 10m, (99.6%)
at switches Ron = 100m, (99.3%)
98
96 at switches Ron = 1, (95.9%)
94
10ms 15ms 20ms 25ms 30ms 35ms 40ms
100* AVG(W(U1))/(-AVG(W(Vcc)))
Time
Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 19