SlideShare a Scribd company logo
1 of 27
1
LED電源回路アプリケーションガイド
NJM2377–Boost DC/DC Converter
2017年12月13日
マルツエレック株式会社
Copyright (C)Marutsuelec Co.,Ltd. 2017
Contents
Slide #
1. NJM2377 – Boost DC/DC Converter Circuit...........................................................................
2. PWM – Boost DC/DC Converter Basic Operation and Design................................................
2.1 Boost DC/DC Converter – VOUT........................................................................................
2.2 Boost DC/DC Converter – tON /tOFF....................................................................................
2.3 Boost DC/DC Converter – Inductor Selection...................................................................
2.4 Boost DC/DC Converter – Inductor Peak Current.............................................................
2.5 Boost DC/DC Converter – COUT Selection........................................................................
3. NJM2377 – Application Circuit Configuration..........................................................................
3.1 NJM2377 – Soft Start Time Setting...................................................................................
3.2 NJM2377 – Oscillation Frequency Setting........................................................................
3.3 Error Amp Feed Back Loop Setting..................................................................................
4. Performance Characteristics……………………………...........................................................
4.1 Output Start-Up Voltage and Current................................................................................
4.2 Output Ripple Voltage.......................................................................................................
4.3 Efficiency..........................................................................................................................
4.4 Step-Load Response…….................................................................................................
5. Voltage and Current Simulation Result...................................................................................
6. Losses
6.1 Bipolar Junction Transistor Losses...................................................................................
6.2 Schottky Barrier Diode Losses..........................................................................................
7. Waveforms
7.1 Start-Up Sequencing Waveforms......................................................................................
7.2 Switching Waveform at Load 50mA..................................................................................
7.3 Switching Waveform at Load 10mA..................................................................................
Simulations index.........................................................................................................................
Simulations Settings....................................................................................................................
3
4
5
6
7
8
9
10
11-12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27-28
2Copyright (C)Marutsuelec Co.,Ltd. 2017
1. NJM2377 – Boost DC/DC Converter Circuit
3
CLP
100pF
Rf
560k
ESR
0.103
Cin
220uF
L
150u
1 2
Rload
180
R1
9.1k
R2
150k
Q1
Q2SD2623
OUT
R3
0.8
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
D1
HRU0302A
0
V+
5V
0
IN
Cout
220uF
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
5V to 9V at 50mA Boost DC/DC Converter (fOSC=150kHz, Vripple=30mVp-p)
U1: New Japan Radio NJM2377 Control IC
Q1: Panasonic 2SD2623 NPN
D1: Renesas HRU0302A Schottky Barrier Diode
Copyright (C)Marutsuelec Co.,Ltd. 2017
2. PWM – Boost DC/DC Converter Basic Operation and Design
ESR
IN
L
1 2
Rload
OUT
R1
R2
Q1
QN_SW
V+
0
Cout
D1
PWM Control
Circuit
4
PWM output
pulse
VOUT=9V
tON tOFF
VIN=5V L: IL
• VOUT is monitored by R1 and R2 then compared to reference voltage VB in NJM2377.
• Error voltage is pulse width modulated with sawtooth waveform.
• PWM output pulse width is proportional to the error level. This signal will control the
switch ON/OFF(tON /tOFF).
• Therefore VOUT, which is proportional to tON /tOFF, is controlled to the desired voltage.
2.1)
2.5)
2.2)
2.3),
2.4)
Copyright (C)Marutsuelec Co.,Ltd. 2017
2.1 Boost DC/DC Converter – VOUT
• VOUT is determined by R1 and R2, without considering I(IN-) of NJM2377 VOUT is calculated as
below.
• For VOUT=9V, R1=9.1kΩ, R2=150kΩ are selected.
5
9.09V0.521
9.1k
150k
1
1
2













 REFOUT V
R
R
V
Copyright (C)Marutsuelec Co.,Ltd. 2017
2.2 Boost DC/DC Converter – tON /tOFF
• If the circuit works in continuous conduction mode (CCM), output voltage (VOUT) and ON/OFF
time (tON /tOFF) follow the equation below.
then
• From VIN =5V, VOUT =9V and fOSC =150kHz, these result as tON /tOFF are tON=2.96μs, tOFF=3.71μs,
and duty=45%.
6
IN
OFF
OFFON
OUT V
t
tt
V 




 

OSCOUT
INOUT
ON
fV
VV
t



Copyright (C)Marutsuelec Co.,Ltd. 2017
2.3 Boost DC/DC Converter – Inductor Selection
• LMIN value for the convertor to work in continuous conduction mode (CCM), is calculated as
below.
• From VIN =5V, VOUT =9V, IOUT =50mA and tON=2.96μs, these result as LMIN=82.2μH.
• A larger value will be used to increase the available output current, but limit it to around
twice the LMIN value. L =150μH is selected.
7
ON
OUTOUT
IN
MIN t
IV
V
L 


2
2
MINMIN LLL  2
Copyright (C)Marutsuelec Co.,Ltd. 2017
Time
86.810ms 86.816ms 86.822ms 86.828ms
I(L)
0A
50mA
100mA
150mA
200mA
(86.818m,140.985m)
(86.821m,40.531m)
• PSpice is used to verify the circuit design.
• IL, PK=140.985mA and IL,PK=140.985m-
40.531m=100.454mA
2.4 Boost DC/DC Converter – Inductor Peak
Current
• IL, PK is calculated as below.
• And the current ripple - IL, PK is calculated
as below
8
140mA2.96μ
150μ2
5
5
0.059
2









 ON
IN
IN
OUTOUT
L,PK t
L
V
V
IV
I
mA992.96μ
150μ
5

 ON
IN
L,PK t
L
V
ΔI
• Add trace I(L)
• Zoom to check the peak value.
IL, PK
Copyright (C)Marutsuelec Co.,Ltd. 2017
• PSpice is used to verify the circuit design.
• IL,PK=101.168mA, ton=3μs.
• Vripple =14.8mVp-p
• Irms
*=53.856mArms.
 Irms is larger than calculated value due to feedback loop
response ripple current.
Time
87.5484ms 87.5684ms
V(OUT)
9.06V
9.07V
9.08V
9.09V
SEL>>
(87.556m,9.0792)
(87.553m,9.0644)
I(L) rms(I(Cout))
0A
100mA
200mA
(87.556m,141.564m)
(87.553m,40.396m)
• COUT is determined from the Vripple Spec
(30mVp-p).
• If COUT >> IOUTton/Vripple
(50m2.96μ/30m=4.933μF), Vripple will
mainly caused by ESR.
• Select the capacitor that can handle the
ripple current Irms.
• COUT=220μF, ESR=103m is selected.




m103
99m
30m
)(
L
ppripple
I
V
ESR
2.5 Boost DC/DC Converter – COUT Selection
9
IL, PK
13mArms
6.67μ
2.96μ
32
99m
32




t
tonI
I
L
rms
Irms
Vripple
Copyright (C)Marutsuelec Co.,Ltd. 2017
CLP
100pF
Rf
560k
ESR
0.103
Cin
220uF
L
150u
1 2
Rload
180
R1
9.1k
R2
150k
Q1
Q2SD2623
OUT
R3
0.8
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
D1
HRU0302A
0
V+
5V
0
IN
Cout
220uF
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
3. NJM2377 – Application Circuit Configuration
10
5V to 9V at 50mA Boost DC/DC Converter (fOSC=150kHz)
U1: New Japan Radio NJM2377 Control IC
Q1: Panasonic 2SD2623 NPN
D1: Renesas HRU0302A Schottky Barrier Diode
3.1)
3.2)
3.3)
Copyright (C)Marutsuelec Co.,Ltd. 2017
• First, caculate Rsr by
Rsr>VTHLA(max.)/ICHG(min.)
(1.8V/10μA=180k)
• During steady state operation,
I(CS)=IBCS=250ns. Maximum duty cycle is
determined by V(CS). Set
V(CS)=VTHCS(max.)=0.8V, Rsf is calculated by
160k ΩRsf
1.5
Rsf180k
180k
0.8
.)(max






 REFTHCS V
RsfRsr
Rsr
V
• Soft-start time or tduty(max.) is time needed for
V(CS) to reach VTHCS(max.) by charging capacitor
Cs.
• CS is charged by current Ics, calculated by:
then
3.1 NJM2377 – Soft Start Time Setting
11
NJM2377 soft-start time is determined by Rsr, CS and Rsf
4.41uA
160k180k
1.5





RsfRsr
V
I
REF
CS
109ms
30μ4.41μ
4.7μ0.8
.)(max
.)(max







CHGCS
THCS
duty
II
CsV
t
Copyright (C)Marutsuelec Co.,Ltd. 2017
3.1 NJM2377 – Soft Start Time Setting (Simulation)
12
NJM2377 soft-start time is determined by Rsr, Rsf and CS
• Select Rsr, Rsf, and CS then check tduty(max.) by
simulation.
• tduty(max.)=109.170ms. for CS=4.7uF
• tduty(max.)=76.653ms for CS=3.3uF and
tduty(max.)=157.953ms for CS=6.8uF.
CS
{CS}
IC = 0
PARAMETERS:
CS = 4.7u
CLP
100pF
Rf
560k
Cin
220uF
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
10MEG
Ct
10nF
IC = 0
0 CS
V+
5V
IN
REF
0
Rsf
160k
0
Rsr
180k
0
R1
1MEG
.TRAN 0 500ms 0 Time
0s 250ms 500ms
V(CS)
0V
0.5V
1.0V
1.5V
(109.170m,800.000m)
(76.653m,800.000m)
(157.953m,800.000m)
Copyright (C)Marutsuelec Co.,Ltd. 2017
3.2 NJM2377 – Oscillation Frequency Setting
• CT = 470pF and RT = 24kΩ to set an oscillation frequency to be 150kHz.
13
V
CLP
100pF
Rf
560k
Cin
220uF
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
0
V+
5V
IN
0
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
R1
1MEG
NJM2377 oscillation frequency fOSC is determined by CT and RT
fosc=150kHz
RT=24k
Copyright (C)Marutsuelec Co.,Ltd. 2017
3.3 Error Amp Feed Back Loop Setting
• For F.B loop gain G > 100, Rf is calculated
as:
• CLP is suggested to use value between
100pF~1,000pF
• Inappropriate F.B loop design can cause an
oscillation. PSpice is used to verify the
ripple voltage vs. Rf and CLP values.
• Simulation result shows Vripple of the circuit with
RF=1000k  compare to the circuit with
RF=560k.
• Changing RF to be 560k  can reduce Vripple from
34mVp-p to less than 20mVp-p.
14
1000kRf
177
150k//9.1k
1,000k
2//1



RR
Rf
G
Error Amp Feed Back Loop is determined by R1, R2, Rf and CLP
Time
79.00ms 79.25ms 79.50ms 79.75ms 80.00ms
V(OUT)
9.04V
9.06V
9.08V
9.10V
9.12V
RF=1000k, CLP=100pF
RF=560k, CLP=100pF
Copyright (C)Marutsuelec Co.,Ltd. 2017
4. Performance Characteristics
CLP
100pF
Rf
560k
ESR
0.103
Cin
220uF
L
150u
1 2
Rload
180
R1
9.1k
R2
150k
Q1
Q2SD2623
OUT
R3
0.8
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
D1
HRU0302A
0
V+
5V
0
IN
Cout
220uF
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
15
• VIN=5V
• VOUT=9V
• IOUT=50mA
• Vripple(P-P)= less than 30mV
• Efficiency= 75% at IOUT=50mA
U1: New Japan Radio NJM2377 Control IC
Q1: Panasonic 2SD2623 NPN
D1: Renesas HRU0302A Schottky Barrier Diode
Copyright (C)Marutsuelec Co.,Ltd. 2017
4.1 Output Start-Up Voltage and Current
• Simulation result shows output start-up time of the circuit. This circuit needs
55ms to reach steady state.
16
Time
0s 20ms 40ms 60ms 80ms 90ms
V(OUT)
4V
5V
6V
7V
8V
9V
10V
I(Rload)
20mA
30mA
40mA
50mA
SEL>>
V(OUT)
I(Rload)
Copyright (C)Marutsuelec Co.,Ltd. 2017
Time
60ms 65ms 70ms 75ms 80ms 85ms 90ms
V(OUT)
9.05V
9.06V
9.07V
9.08V
9.09V
9.10V
SEL>>
Time
89.90ms 89.91ms 89.92ms 89.93ms 89.94ms 89.95ms 89.96ms 89.97ms 89.98ms 89.99ms
V(OUT)
9.060V
9.065V
9.070V
9.075V
9.080V
4.2 Output Ripple Voltage
• Simulation result shows output ripple voltage caused by switching(18mVP-P) and
F.B loop oscillation(25mVP-P).
17
V(OUT)
V(OUT)
[ZOOM] 18mVP-P
25mVP-P
Copyright (C)Marutsuelec Co.,Ltd. 2017
4.3 Efficiency
• Efficiency of the converter at load IOUT=50mA is 75.5%.
18
Time
70ms 75ms 80ms 85ms 90ms
100*W(Rload)/rms(-W(V+))
0
25
50
75
100
(90.000m,75.500)
Efficiency
Copyright (C)Marutsuelec Co.,Ltd. 2017
4.4 Step-Load Response
• Simulation result shows the transient response of the circuit, when load currents are 50mA to
10mA to 50mA steps .
19
V(OUT)
I(L)
I(Load)
Time
60ms 65ms 70ms 75ms 80ms 85ms 90ms
V(OUT)
9.050V
9.075V
9.100V
9.125V
I(L)
0A
100mA
200mA
I(I1)
0A
20mA
30mA
40mA
50mA
SEL>>
Copyright (C)Marutsuelec Co.,Ltd. 2017
5. Voltage and Current Simulation Result
• Simulation result shows voltage and current of the devices.
• Select L and Cout that can handle their Irms value.
• The absolute maximum value of Q1 and D1 are compared to simulation result for stress analysis.
20
Time
0s 20ms 40ms 60ms 80ms 90ms
1 V(Cout:1) 2 rms(I(Cout))
0V
5V
10V
1
0A
50mA
100mA
2
SEL>>SEL>>
1 V(D1:2)- V(D1:1) 2 I(D1) avg(I(D1))
0V
10V
20V
1
100mA
200mA
300mA
2
>>
1 V(Q1:c) 2 I(Q1:c)
0V
5V
10V
15V
20V
1
250mA
500mA
2
>>
I(L) rms(I(L))
0A
200mAI(L) peak,
rms
I(L) = 261.054mA(peak) , 94.1399mA(rms)
V(Q1:C),
I(Q1:C)
Q1 2SD2623: VCEO=20V, ICMAX=0.5A
V(D1:K,D1:A),
IF(D1)
D1 HRU0302A: VRRM=20V, IO=0.3A(avg), IFSM=3A
V(Cout),
I(Cout) rms
I(Cout) = 50.255mA(rms)
100% of Rated Value
100% of Rated Value
Copyright (C)Marutsuelec Co.,Ltd. 2017
Time
89.964ms 89.966ms 89.968ms 89.970ms 89.972ms 89.974ms
1 V(Q1:c) 2 I(Q1:c)
0V
5V
10V
15V
20V
1
>>
0A
100mA
200mA
300mA
2
1 V(Q1:c)*I(Q1:c) 2 avg(W(Q1))
0W
200mW
400mW
600mW
1
SEL>>
0W
50mW
100mW
150mW
2
SEL>>
6.1 Bipolar Junction Transistor Losses
• Simulation result shows waveforms of IC and VCE of transistor Q1.Loss in peak and
average values are also shown.
21
100% of Rated Value (PC, max.=150mW)
PC, avg.=17.254mW
turn-on loss
Conduction loss
turn-off loss
V(Q1:C),
I(Q1:C)
P(Q1)
peak, avg
Copyright (C)Marutsuelec Co.,Ltd. 2017
Time
89.964ms 89.965ms 89.966ms 89.967ms 89.968ms 89.969ms 89.970ms 89.971ms 89.972ms 89.973ms
1 V(D1:1,D1:2) 2 I(D1)
-10V
-5V
0V
5V
10V
1
-200mA
-100mA
0A
100mA
200mA
2
SEL>>SEL>>
W(D1) avg(W(D1))
-100mW
-50mW
0W
50mW
100mW
6.2 Schottky Barrier Diode Losses
• Simulation result shows waveforms of IF and VAK of diode D1.Loss in peak and
average values are also shown.
22
PD, avg.=18.45mW
Reverse
recovery loss
Conduction loss
V(D1:A,D1:K),
I(D1
P(D1)
peak, avg
Reverse
leakage loss
Reverse recovery
characteristic
Copyright (C)Marutsuelec Co.,Ltd. 2017
7.1 Start-Up Sequencing Waveforms
• Simulation result shows start-up sequencing waveforms, including V(OUT) and control signal
(VRAMP, VOSC, and VFB).
23
V(OUT)
V(FB)
VOSC: V(CT)
VRAMP: V(CS)
Time
0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms
V(OUT)
5.0V
6.0V
7.0V
8.0V
9.0V
V(U1:CT) V(U1:CS) V(U1:FB)
0V
0.5V
1.0V
1.5V
2.0V
2.5V
SEL>>
Copyright (C)Marutsuelec Co.,Ltd. 2017
7.2 Switching Waveforms at Load 50 mA (RL=180)
• Simulation result shows boost converter switching waveforms at load 50mA, including IL,
VC(Q1), IC(Q1), I(D1) and V(OUT)
24
I(D1)
I(L)
VC(Q1)
IC(Q1)
V(OUT)
Time
89.950ms 89.960ms 89.970ms 89.980ms89.944ms
V(OUT)
9.050V
9.075V
9.100V
SEL>>
I(D1)
-50mA
0A
50mA
100mA
150mA
1 V(Q1:c) 2 I(Q1:c)
0V
2.5V
5.0V
7.5V
10.0V
1
0A
100mA
150mA
200mA
2
>>
I(L)
0A
50mA
100mA
150mA
200mA
Copyright (C)Marutsuelec Co.,Ltd. 2017
7.3 Switching Waveforms at Load 10 mA (RL=900)
• Simulation result shows boost converter switching waveforms at load 10mA, including IL,
VC(Q1), IC(Q1), I(D1) and V(OUT)
25
I(D1)
I(L)
VC(Q1)
IC(Q1)
V(OUT)
Time
89.944ms 89.952ms 89.960ms 89.968ms 89.976ms 89.984ms
V(OUT)
9.075V
9.100V
9.125V
I(D1)
-25mA
25mA
50mA
75mA
SEL>>
1 V(Q1:c) 2 I(Q1:c)
-4V
4V
8V
12V
1
>>
-25mA
0A
25mA
50mA
75mA
2
I(L)
-25mA
0A
25mA
50mA
75mA
Copyright (C)Marutsuelec Co.,Ltd. 2017
SIMULATION SETTINGS 1
• .TRAN 0 90ms 0.1ms 150n
• .OPTIONS ABSTOL= 10.0n
• .OPTIONS RELTOL= 0.01
• .OPTIONS VNTOL= 10.0u
26
These settings are for:
• Start-Up Transient Simulation (0~90ms.)
• Voltage and Current Simulation
• Step-Load Response
Copyright (C)Marutsuelec Co.,Ltd. 2017
SIMULATION SETTINGS 2
• .TRAN 0 90ms 70ms 100n
• .OPTIONS ABSTOL= 10.0n
• .OPTIONS RELTOL= 0.01
• .OPTIONS VNTOL= 10.0u
27
These settings are for:
• Efficiency and Losses
• Switching Waveforms
Copyright (C)Marutsuelec Co.,Ltd. 2017

More Related Content

What's hot

SPICE PARK AUG2018 (4,873 Models)
SPICE PARK AUG2018 (4,873 Models)SPICE PARK AUG2018 (4,873 Models)
SPICE PARK AUG2018 (4,873 Models)Tsuyoshi Horigome
 
SPICE PARK OCT2021 (5,774 SPICE Models)
SPICE PARK OCT2021 (5,774 SPICE Models) SPICE PARK OCT2021 (5,774 SPICE Models)
SPICE PARK OCT2021 (5,774 SPICE Models) Tsuyoshi Horigome
 
Free SPICE Model List by SPICE PARK(09APR2015)
Free SPICE Model List by SPICE PARK(09APR2015)Free SPICE Model List by SPICE PARK(09APR2015)
Free SPICE Model List by SPICE PARK(09APR2015)Tsuyoshi Horigome
 
SPICEモデルの全リスト(スパイス・パーク 2015年6月度 4,381モデル)
SPICEモデルの全リスト(スパイス・パーク 2015年6月度 4,381モデル)SPICEモデルの全リスト(スパイス・パーク 2015年6月度 4,381モデル)
SPICEモデルの全リスト(スパイス・パーク 2015年6月度 4,381モデル)Tsuyoshi Horigome
 
SPICE PARK JUN2016 (4,525 Models)
SPICE PARK JUN2016  (4,525 Models)SPICE PARK JUN2016  (4,525 Models)
SPICE PARK JUN2016 (4,525 Models)Tsuyoshi Horigome
 
High Voltage Isolation Flyback Converter using LTspice
High Voltage Isolation Flyback Converter using LTspiceHigh Voltage Isolation Flyback Converter using LTspice
High Voltage Isolation Flyback Converter using LTspiceTsuyoshi Horigome
 
Update 5 models in SPICE PARK(APR2018)
Update 5 models in SPICE PARK(APR2018)Update 5 models in SPICE PARK(APR2018)
Update 5 models in SPICE PARK(APR2018)Tsuyoshi Horigome
 
Spicepark nov2017 4,772 pcs.(SPICE Model Library)
Spicepark nov2017 4,772 pcs.(SPICE Model Library)Spicepark nov2017 4,772 pcs.(SPICE Model Library)
Spicepark nov2017 4,772 pcs.(SPICE Model Library)Tsuyoshi Horigome
 
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARK
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARKSPICE MODEL of CBS10S40 (Professional Model) in SPICE PARK
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARKTsuyoshi Horigome
 
Spicepark JAN2018 4,792 pcs.(SPICE Model Library)
Spicepark JAN2018 4,792 pcs.(SPICE Model Library)Spicepark JAN2018 4,792 pcs.(SPICE Model Library)
Spicepark JAN2018 4,792 pcs.(SPICE Model Library)Tsuyoshi Horigome
 
Spicepark AUG2017 (4,726Models)
Spicepark AUG2017 (4,726Models)Spicepark AUG2017 (4,726Models)
Spicepark AUG2017 (4,726Models)Tsuyoshi Horigome
 
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARK
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARKALL SPICE Models APR2015 (4,340 Models) in SPICE PARK
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARKTsuyoshi Horigome
 
Spice Park 257 Free Spice Model 15 JUN2015
Spice Park 257 Free Spice Model 15 JUN2015Spice Park 257 Free Spice Model 15 JUN2015
Spice Park 257 Free Spice Model 15 JUN2015Tsuyoshi Horigome
 
Update 11 models in SPICE PARK(DEC2018)
Update 11 models in SPICE PARK(DEC2018)Update 11 models in SPICE PARK(DEC2018)
Update 11 models in SPICE PARK(DEC2018)Tsuyoshi Horigome
 
Spice park Update of SEP2015
Spice park Update of SEP2015Spice park Update of SEP2015
Spice park Update of SEP2015Tsuyoshi Horigome
 
Spicepark DEC2017 4,783 pcs.(SPICE Model Library)
Spicepark DEC2017 4,783 pcs.(SPICE Model Library)Spicepark DEC2017 4,783 pcs.(SPICE Model Library)
Spicepark DEC2017 4,783 pcs.(SPICE Model Library)Tsuyoshi Horigome
 
Spicepark DEC2018 (4,941 SPICE Models)
Spicepark DEC2018 (4,941 SPICE Models)Spicepark DEC2018 (4,941 SPICE Models)
Spicepark DEC2018 (4,941 SPICE Models)Tsuyoshi Horigome
 
SPICEPARK MAR2018 (4,813 Models)
SPICEPARK MAR2018 (4,813 Models)SPICEPARK MAR2018 (4,813 Models)
SPICEPARK MAR2018 (4,813 Models)Tsuyoshi Horigome
 

What's hot (20)

SPICE PARK AUG2018 (4,873 Models)
SPICE PARK AUG2018 (4,873 Models)SPICE PARK AUG2018 (4,873 Models)
SPICE PARK AUG2018 (4,873 Models)
 
SPICE PARK OCT2021 (5,774 SPICE Models)
SPICE PARK OCT2021 (5,774 SPICE Models) SPICE PARK OCT2021 (5,774 SPICE Models)
SPICE PARK OCT2021 (5,774 SPICE Models)
 
Circuit Design using TI
Circuit Design using TICircuit Design using TI
Circuit Design using TI
 
Free SPICE Model List by SPICE PARK(09APR2015)
Free SPICE Model List by SPICE PARK(09APR2015)Free SPICE Model List by SPICE PARK(09APR2015)
Free SPICE Model List by SPICE PARK(09APR2015)
 
SPICEモデルの全リスト(スパイス・パーク 2015年6月度 4,381モデル)
SPICEモデルの全リスト(スパイス・パーク 2015年6月度 4,381モデル)SPICEモデルの全リスト(スパイス・パーク 2015年6月度 4,381モデル)
SPICEモデルの全リスト(スパイス・パーク 2015年6月度 4,381モデル)
 
SPICE PARK JUN2016 (4,525 Models)
SPICE PARK JUN2016  (4,525 Models)SPICE PARK JUN2016  (4,525 Models)
SPICE PARK JUN2016 (4,525 Models)
 
High Voltage Isolation Flyback Converter using LTspice
High Voltage Isolation Flyback Converter using LTspiceHigh Voltage Isolation Flyback Converter using LTspice
High Voltage Isolation Flyback Converter using LTspice
 
SPICE PARK (4,828 Models)
SPICE PARK (4,828 Models)SPICE PARK (4,828 Models)
SPICE PARK (4,828 Models)
 
Update 5 models in SPICE PARK(APR2018)
Update 5 models in SPICE PARK(APR2018)Update 5 models in SPICE PARK(APR2018)
Update 5 models in SPICE PARK(APR2018)
 
Spicepark nov2017 4,772 pcs.(SPICE Model Library)
Spicepark nov2017 4,772 pcs.(SPICE Model Library)Spicepark nov2017 4,772 pcs.(SPICE Model Library)
Spicepark nov2017 4,772 pcs.(SPICE Model Library)
 
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARK
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARKSPICE MODEL of CBS10S40 (Professional Model) in SPICE PARK
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARK
 
Spicepark JAN2018 4,792 pcs.(SPICE Model Library)
Spicepark JAN2018 4,792 pcs.(SPICE Model Library)Spicepark JAN2018 4,792 pcs.(SPICE Model Library)
Spicepark JAN2018 4,792 pcs.(SPICE Model Library)
 
Spicepark AUG2017 (4,726Models)
Spicepark AUG2017 (4,726Models)Spicepark AUG2017 (4,726Models)
Spicepark AUG2017 (4,726Models)
 
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARK
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARKALL SPICE Models APR2015 (4,340 Models) in SPICE PARK
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARK
 
Spice Park 257 Free Spice Model 15 JUN2015
Spice Park 257 Free Spice Model 15 JUN2015Spice Park 257 Free Spice Model 15 JUN2015
Spice Park 257 Free Spice Model 15 JUN2015
 
Update 11 models in SPICE PARK(DEC2018)
Update 11 models in SPICE PARK(DEC2018)Update 11 models in SPICE PARK(DEC2018)
Update 11 models in SPICE PARK(DEC2018)
 
Spice park Update of SEP2015
Spice park Update of SEP2015Spice park Update of SEP2015
Spice park Update of SEP2015
 
Spicepark DEC2017 4,783 pcs.(SPICE Model Library)
Spicepark DEC2017 4,783 pcs.(SPICE Model Library)Spicepark DEC2017 4,783 pcs.(SPICE Model Library)
Spicepark DEC2017 4,783 pcs.(SPICE Model Library)
 
Spicepark DEC2018 (4,941 SPICE Models)
Spicepark DEC2018 (4,941 SPICE Models)Spicepark DEC2018 (4,941 SPICE Models)
Spicepark DEC2018 (4,941 SPICE Models)
 
SPICEPARK MAR2018 (4,813 Models)
SPICEPARK MAR2018 (4,813 Models)SPICEPARK MAR2018 (4,813 Models)
SPICEPARK MAR2018 (4,813 Models)
 

Similar to LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)

LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料Tsuyoshi Horigome
 
On the Impact of Timer Resolution in the Efficiency Optimization of Synchrono...
On the Impact of Timer Resolution in the Efficiency Optimization of Synchrono...On the Impact of Timer Resolution in the Efficiency Optimization of Synchrono...
On the Impact of Timer Resolution in the Efficiency Optimization of Synchrono...IJPEDS-IAES
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductorauthelectroniccom
 
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 Newauthelectroniccom
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEnandivashishth
 
SolAero Tech Intern_Project Overview
SolAero Tech Intern_Project OverviewSolAero Tech Intern_Project Overview
SolAero Tech Intern_Project OverviewEddie Benitez-Jones
 
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLERDC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLERTridib Bose
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitTsuyoshi Horigome
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書spicepark
 
Speed Control Of DC motor By Using PWM Technique
Speed Control Of DC motor By Using PWM TechniqueSpeed Control Of DC motor By Using PWM Technique
Speed Control Of DC motor By Using PWM TechniqueRITESH D. PATIL
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015マルツエレック株式会社 marutsuelec
 
IRJET-Static Voltage Stabilizer
IRJET-Static Voltage StabilizerIRJET-Static Voltage Stabilizer
IRJET-Static Voltage StabilizerIRJET Journal
 
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V NewOriginal MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V NewAUTHELECTRONIC
 
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 New
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 NewOriginal Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 New
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 NewAUTHELECTRONIC
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitTsuyoshi Horigome
 
Temp based fan speed control
Temp based fan speed controlTemp based fan speed control
Temp based fan speed controlSai Malleswar
 

Similar to LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン) (20)

LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
 
On the Impact of Timer Resolution in the Efficiency Optimization of Synchrono...
On the Impact of Timer Resolution in the Efficiency Optimization of Synchrono...On the Impact of Timer Resolution in the Efficiency Optimization of Synchrono...
On the Impact of Timer Resolution in the Efficiency Optimization of Synchrono...
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
 
Nte2361
Nte2361Nte2361
Nte2361
 
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
 
pwm for speed control
pwm for speed controlpwm for speed control
pwm for speed control
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
SolAero Tech Intern_Project Overview
SolAero Tech Intern_Project OverviewSolAero Tech Intern_Project Overview
SolAero Tech Intern_Project Overview
 
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLERDC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLER
 
Ucc 3895 dw
Ucc 3895 dwUcc 3895 dw
Ucc 3895 dw
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Speed Control Of DC motor By Using PWM Technique
Speed Control Of DC motor By Using PWM TechniqueSpeed Control Of DC motor By Using PWM Technique
Speed Control Of DC motor By Using PWM Technique
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
 
Lm555
Lm555Lm555
Lm555
 
IRJET-Static Voltage Stabilizer
IRJET-Static Voltage StabilizerIRJET-Static Voltage Stabilizer
IRJET-Static Voltage Stabilizer
 
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V NewOriginal MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
 
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 New
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 NewOriginal Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 New
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 New
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
Temp based fan speed control
Temp based fan speed controlTemp based fan speed control
Temp based fan speed control
 

More from Tsuyoshi Horigome

Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Tsuyoshi Horigome
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)
 

Recently uploaded

Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingBootNeck1
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...Amil Baba Dawood bangali
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgsaravananr517913
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxVelmuruganTECE
 

Recently uploaded (20)

Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event Scheduling
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptx
 

LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)

  • 2. Contents Slide # 1. NJM2377 – Boost DC/DC Converter Circuit........................................................................... 2. PWM – Boost DC/DC Converter Basic Operation and Design................................................ 2.1 Boost DC/DC Converter – VOUT........................................................................................ 2.2 Boost DC/DC Converter – tON /tOFF.................................................................................... 2.3 Boost DC/DC Converter – Inductor Selection................................................................... 2.4 Boost DC/DC Converter – Inductor Peak Current............................................................. 2.5 Boost DC/DC Converter – COUT Selection........................................................................ 3. NJM2377 – Application Circuit Configuration.......................................................................... 3.1 NJM2377 – Soft Start Time Setting................................................................................... 3.2 NJM2377 – Oscillation Frequency Setting........................................................................ 3.3 Error Amp Feed Back Loop Setting.................................................................................. 4. Performance Characteristics……………………………........................................................... 4.1 Output Start-Up Voltage and Current................................................................................ 4.2 Output Ripple Voltage....................................................................................................... 4.3 Efficiency.......................................................................................................................... 4.4 Step-Load Response……................................................................................................. 5. Voltage and Current Simulation Result................................................................................... 6. Losses 6.1 Bipolar Junction Transistor Losses................................................................................... 6.2 Schottky Barrier Diode Losses.......................................................................................... 7. Waveforms 7.1 Start-Up Sequencing Waveforms...................................................................................... 7.2 Switching Waveform at Load 50mA.................................................................................. 7.3 Switching Waveform at Load 10mA.................................................................................. Simulations index......................................................................................................................... Simulations Settings.................................................................................................................... 3 4 5 6 7 8 9 10 11-12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27-28 2Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 3. 1. NJM2377 – Boost DC/DC Converter Circuit 3 CLP 100pF Rf 560k ESR 0.103 Cin 220uF L 150u 1 2 Rload 180 R1 9.1k R2 150k Q1 Q2SD2623 OUT R3 0.8 U1 NJM2377 -IN FB GND OUTV+ CS CT REF Rt 24k Ct 470pF IC = 0 D1 HRU0302A 0 V+ 5V 0 IN Cout 220uF Rsf 160k CS 4.7uF IC = 0 0 Rsr 180k 0 5V to 9V at 50mA Boost DC/DC Converter (fOSC=150kHz, Vripple=30mVp-p) U1: New Japan Radio NJM2377 Control IC Q1: Panasonic 2SD2623 NPN D1: Renesas HRU0302A Schottky Barrier Diode Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 4. 2. PWM – Boost DC/DC Converter Basic Operation and Design ESR IN L 1 2 Rload OUT R1 R2 Q1 QN_SW V+ 0 Cout D1 PWM Control Circuit 4 PWM output pulse VOUT=9V tON tOFF VIN=5V L: IL • VOUT is monitored by R1 and R2 then compared to reference voltage VB in NJM2377. • Error voltage is pulse width modulated with sawtooth waveform. • PWM output pulse width is proportional to the error level. This signal will control the switch ON/OFF(tON /tOFF). • Therefore VOUT, which is proportional to tON /tOFF, is controlled to the desired voltage. 2.1) 2.5) 2.2) 2.3), 2.4) Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 5. 2.1 Boost DC/DC Converter – VOUT • VOUT is determined by R1 and R2, without considering I(IN-) of NJM2377 VOUT is calculated as below. • For VOUT=9V, R1=9.1kΩ, R2=150kΩ are selected. 5 9.09V0.521 9.1k 150k 1 1 2               REFOUT V R R V Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 6. 2.2 Boost DC/DC Converter – tON /tOFF • If the circuit works in continuous conduction mode (CCM), output voltage (VOUT) and ON/OFF time (tON /tOFF) follow the equation below. then • From VIN =5V, VOUT =9V and fOSC =150kHz, these result as tON /tOFF are tON=2.96μs, tOFF=3.71μs, and duty=45%. 6 IN OFF OFFON OUT V t tt V         OSCOUT INOUT ON fV VV t    Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 7. 2.3 Boost DC/DC Converter – Inductor Selection • LMIN value for the convertor to work in continuous conduction mode (CCM), is calculated as below. • From VIN =5V, VOUT =9V, IOUT =50mA and tON=2.96μs, these result as LMIN=82.2μH. • A larger value will be used to increase the available output current, but limit it to around twice the LMIN value. L =150μH is selected. 7 ON OUTOUT IN MIN t IV V L    2 2 MINMIN LLL  2 Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 8. Time 86.810ms 86.816ms 86.822ms 86.828ms I(L) 0A 50mA 100mA 150mA 200mA (86.818m,140.985m) (86.821m,40.531m) • PSpice is used to verify the circuit design. • IL, PK=140.985mA and IL,PK=140.985m- 40.531m=100.454mA 2.4 Boost DC/DC Converter – Inductor Peak Current • IL, PK is calculated as below. • And the current ripple - IL, PK is calculated as below 8 140mA2.96μ 150μ2 5 5 0.059 2           ON IN IN OUTOUT L,PK t L V V IV I mA992.96μ 150μ 5   ON IN L,PK t L V ΔI • Add trace I(L) • Zoom to check the peak value. IL, PK Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 9. • PSpice is used to verify the circuit design. • IL,PK=101.168mA, ton=3μs. • Vripple =14.8mVp-p • Irms *=53.856mArms.  Irms is larger than calculated value due to feedback loop response ripple current. Time 87.5484ms 87.5684ms V(OUT) 9.06V 9.07V 9.08V 9.09V SEL>> (87.556m,9.0792) (87.553m,9.0644) I(L) rms(I(Cout)) 0A 100mA 200mA (87.556m,141.564m) (87.553m,40.396m) • COUT is determined from the Vripple Spec (30mVp-p). • If COUT >> IOUTton/Vripple (50m2.96μ/30m=4.933μF), Vripple will mainly caused by ESR. • Select the capacitor that can handle the ripple current Irms. • COUT=220μF, ESR=103m is selected.     m103 99m 30m )( L ppripple I V ESR 2.5 Boost DC/DC Converter – COUT Selection 9 IL, PK 13mArms 6.67μ 2.96μ 32 99m 32     t tonI I L rms Irms Vripple Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 10. CLP 100pF Rf 560k ESR 0.103 Cin 220uF L 150u 1 2 Rload 180 R1 9.1k R2 150k Q1 Q2SD2623 OUT R3 0.8 U1 NJM2377 -IN FB GND OUTV+ CS CT REF Rt 24k Ct 470pF IC = 0 D1 HRU0302A 0 V+ 5V 0 IN Cout 220uF Rsf 160k CS 4.7uF IC = 0 0 Rsr 180k 0 3. NJM2377 – Application Circuit Configuration 10 5V to 9V at 50mA Boost DC/DC Converter (fOSC=150kHz) U1: New Japan Radio NJM2377 Control IC Q1: Panasonic 2SD2623 NPN D1: Renesas HRU0302A Schottky Barrier Diode 3.1) 3.2) 3.3) Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 11. • First, caculate Rsr by Rsr>VTHLA(max.)/ICHG(min.) (1.8V/10μA=180k) • During steady state operation, I(CS)=IBCS=250ns. Maximum duty cycle is determined by V(CS). Set V(CS)=VTHCS(max.)=0.8V, Rsf is calculated by 160k ΩRsf 1.5 Rsf180k 180k 0.8 .)(max        REFTHCS V RsfRsr Rsr V • Soft-start time or tduty(max.) is time needed for V(CS) to reach VTHCS(max.) by charging capacitor Cs. • CS is charged by current Ics, calculated by: then 3.1 NJM2377 – Soft Start Time Setting 11 NJM2377 soft-start time is determined by Rsr, CS and Rsf 4.41uA 160k180k 1.5      RsfRsr V I REF CS 109ms 30μ4.41μ 4.7μ0.8 .)(max .)(max        CHGCS THCS duty II CsV t Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 12. 3.1 NJM2377 – Soft Start Time Setting (Simulation) 12 NJM2377 soft-start time is determined by Rsr, Rsf and CS • Select Rsr, Rsf, and CS then check tduty(max.) by simulation. • tduty(max.)=109.170ms. for CS=4.7uF • tduty(max.)=76.653ms for CS=3.3uF and tduty(max.)=157.953ms for CS=6.8uF. CS {CS} IC = 0 PARAMETERS: CS = 4.7u CLP 100pF Rf 560k Cin 220uF U1 NJM2377 -IN FB GND OUTV+ CS CT REF Rt 10MEG Ct 10nF IC = 0 0 CS V+ 5V IN REF 0 Rsf 160k 0 Rsr 180k 0 R1 1MEG .TRAN 0 500ms 0 Time 0s 250ms 500ms V(CS) 0V 0.5V 1.0V 1.5V (109.170m,800.000m) (76.653m,800.000m) (157.953m,800.000m) Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 13. 3.2 NJM2377 – Oscillation Frequency Setting • CT = 470pF and RT = 24kΩ to set an oscillation frequency to be 150kHz. 13 V CLP 100pF Rf 560k Cin 220uF U1 NJM2377 -IN FB GND OUTV+ CS CT REF Rt 24k Ct 470pF IC = 0 0 V+ 5V IN 0 Rsf 160k CS 4.7uF IC = 0 0 Rsr 180k 0 R1 1MEG NJM2377 oscillation frequency fOSC is determined by CT and RT fosc=150kHz RT=24k Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 14. 3.3 Error Amp Feed Back Loop Setting • For F.B loop gain G > 100, Rf is calculated as: • CLP is suggested to use value between 100pF~1,000pF • Inappropriate F.B loop design can cause an oscillation. PSpice is used to verify the ripple voltage vs. Rf and CLP values. • Simulation result shows Vripple of the circuit with RF=1000k  compare to the circuit with RF=560k. • Changing RF to be 560k  can reduce Vripple from 34mVp-p to less than 20mVp-p. 14 1000kRf 177 150k//9.1k 1,000k 2//1    RR Rf G Error Amp Feed Back Loop is determined by R1, R2, Rf and CLP Time 79.00ms 79.25ms 79.50ms 79.75ms 80.00ms V(OUT) 9.04V 9.06V 9.08V 9.10V 9.12V RF=1000k, CLP=100pF RF=560k, CLP=100pF Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 15. 4. Performance Characteristics CLP 100pF Rf 560k ESR 0.103 Cin 220uF L 150u 1 2 Rload 180 R1 9.1k R2 150k Q1 Q2SD2623 OUT R3 0.8 U1 NJM2377 -IN FB GND OUTV+ CS CT REF Rt 24k Ct 470pF IC = 0 D1 HRU0302A 0 V+ 5V 0 IN Cout 220uF Rsf 160k CS 4.7uF IC = 0 0 Rsr 180k 0 15 • VIN=5V • VOUT=9V • IOUT=50mA • Vripple(P-P)= less than 30mV • Efficiency= 75% at IOUT=50mA U1: New Japan Radio NJM2377 Control IC Q1: Panasonic 2SD2623 NPN D1: Renesas HRU0302A Schottky Barrier Diode Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 16. 4.1 Output Start-Up Voltage and Current • Simulation result shows output start-up time of the circuit. This circuit needs 55ms to reach steady state. 16 Time 0s 20ms 40ms 60ms 80ms 90ms V(OUT) 4V 5V 6V 7V 8V 9V 10V I(Rload) 20mA 30mA 40mA 50mA SEL>> V(OUT) I(Rload) Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 17. Time 60ms 65ms 70ms 75ms 80ms 85ms 90ms V(OUT) 9.05V 9.06V 9.07V 9.08V 9.09V 9.10V SEL>> Time 89.90ms 89.91ms 89.92ms 89.93ms 89.94ms 89.95ms 89.96ms 89.97ms 89.98ms 89.99ms V(OUT) 9.060V 9.065V 9.070V 9.075V 9.080V 4.2 Output Ripple Voltage • Simulation result shows output ripple voltage caused by switching(18mVP-P) and F.B loop oscillation(25mVP-P). 17 V(OUT) V(OUT) [ZOOM] 18mVP-P 25mVP-P Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 18. 4.3 Efficiency • Efficiency of the converter at load IOUT=50mA is 75.5%. 18 Time 70ms 75ms 80ms 85ms 90ms 100*W(Rload)/rms(-W(V+)) 0 25 50 75 100 (90.000m,75.500) Efficiency Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 19. 4.4 Step-Load Response • Simulation result shows the transient response of the circuit, when load currents are 50mA to 10mA to 50mA steps . 19 V(OUT) I(L) I(Load) Time 60ms 65ms 70ms 75ms 80ms 85ms 90ms V(OUT) 9.050V 9.075V 9.100V 9.125V I(L) 0A 100mA 200mA I(I1) 0A 20mA 30mA 40mA 50mA SEL>> Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 20. 5. Voltage and Current Simulation Result • Simulation result shows voltage and current of the devices. • Select L and Cout that can handle their Irms value. • The absolute maximum value of Q1 and D1 are compared to simulation result for stress analysis. 20 Time 0s 20ms 40ms 60ms 80ms 90ms 1 V(Cout:1) 2 rms(I(Cout)) 0V 5V 10V 1 0A 50mA 100mA 2 SEL>>SEL>> 1 V(D1:2)- V(D1:1) 2 I(D1) avg(I(D1)) 0V 10V 20V 1 100mA 200mA 300mA 2 >> 1 V(Q1:c) 2 I(Q1:c) 0V 5V 10V 15V 20V 1 250mA 500mA 2 >> I(L) rms(I(L)) 0A 200mAI(L) peak, rms I(L) = 261.054mA(peak) , 94.1399mA(rms) V(Q1:C), I(Q1:C) Q1 2SD2623: VCEO=20V, ICMAX=0.5A V(D1:K,D1:A), IF(D1) D1 HRU0302A: VRRM=20V, IO=0.3A(avg), IFSM=3A V(Cout), I(Cout) rms I(Cout) = 50.255mA(rms) 100% of Rated Value 100% of Rated Value Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 21. Time 89.964ms 89.966ms 89.968ms 89.970ms 89.972ms 89.974ms 1 V(Q1:c) 2 I(Q1:c) 0V 5V 10V 15V 20V 1 >> 0A 100mA 200mA 300mA 2 1 V(Q1:c)*I(Q1:c) 2 avg(W(Q1)) 0W 200mW 400mW 600mW 1 SEL>> 0W 50mW 100mW 150mW 2 SEL>> 6.1 Bipolar Junction Transistor Losses • Simulation result shows waveforms of IC and VCE of transistor Q1.Loss in peak and average values are also shown. 21 100% of Rated Value (PC, max.=150mW) PC, avg.=17.254mW turn-on loss Conduction loss turn-off loss V(Q1:C), I(Q1:C) P(Q1) peak, avg Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 22. Time 89.964ms 89.965ms 89.966ms 89.967ms 89.968ms 89.969ms 89.970ms 89.971ms 89.972ms 89.973ms 1 V(D1:1,D1:2) 2 I(D1) -10V -5V 0V 5V 10V 1 -200mA -100mA 0A 100mA 200mA 2 SEL>>SEL>> W(D1) avg(W(D1)) -100mW -50mW 0W 50mW 100mW 6.2 Schottky Barrier Diode Losses • Simulation result shows waveforms of IF and VAK of diode D1.Loss in peak and average values are also shown. 22 PD, avg.=18.45mW Reverse recovery loss Conduction loss V(D1:A,D1:K), I(D1 P(D1) peak, avg Reverse leakage loss Reverse recovery characteristic Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 23. 7.1 Start-Up Sequencing Waveforms • Simulation result shows start-up sequencing waveforms, including V(OUT) and control signal (VRAMP, VOSC, and VFB). 23 V(OUT) V(FB) VOSC: V(CT) VRAMP: V(CS) Time 0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms V(OUT) 5.0V 6.0V 7.0V 8.0V 9.0V V(U1:CT) V(U1:CS) V(U1:FB) 0V 0.5V 1.0V 1.5V 2.0V 2.5V SEL>> Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 24. 7.2 Switching Waveforms at Load 50 mA (RL=180) • Simulation result shows boost converter switching waveforms at load 50mA, including IL, VC(Q1), IC(Q1), I(D1) and V(OUT) 24 I(D1) I(L) VC(Q1) IC(Q1) V(OUT) Time 89.950ms 89.960ms 89.970ms 89.980ms89.944ms V(OUT) 9.050V 9.075V 9.100V SEL>> I(D1) -50mA 0A 50mA 100mA 150mA 1 V(Q1:c) 2 I(Q1:c) 0V 2.5V 5.0V 7.5V 10.0V 1 0A 100mA 150mA 200mA 2 >> I(L) 0A 50mA 100mA 150mA 200mA Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 25. 7.3 Switching Waveforms at Load 10 mA (RL=900) • Simulation result shows boost converter switching waveforms at load 10mA, including IL, VC(Q1), IC(Q1), I(D1) and V(OUT) 25 I(D1) I(L) VC(Q1) IC(Q1) V(OUT) Time 89.944ms 89.952ms 89.960ms 89.968ms 89.976ms 89.984ms V(OUT) 9.075V 9.100V 9.125V I(D1) -25mA 25mA 50mA 75mA SEL>> 1 V(Q1:c) 2 I(Q1:c) -4V 4V 8V 12V 1 >> -25mA 0A 25mA 50mA 75mA 2 I(L) -25mA 0A 25mA 50mA 75mA Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 26. SIMULATION SETTINGS 1 • .TRAN 0 90ms 0.1ms 150n • .OPTIONS ABSTOL= 10.0n • .OPTIONS RELTOL= 0.01 • .OPTIONS VNTOL= 10.0u 26 These settings are for: • Start-Up Transient Simulation (0~90ms.) • Voltage and Current Simulation • Step-Load Response Copyright (C)Marutsuelec Co.,Ltd. 2017
  • 27. SIMULATION SETTINGS 2 • .TRAN 0 90ms 70ms 100n • .OPTIONS ABSTOL= 10.0n • .OPTIONS RELTOL= 0.01 • .OPTIONS VNTOL= 10.0u 27 These settings are for: • Efficiency and Losses • Switching Waveforms Copyright (C)Marutsuelec Co.,Ltd. 2017