Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Math34 Trigonometric Formulas

3,465 views

Published on

Math34 Trigonometric Formulas

  • very important formulas
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • formulas of trigonometry
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Math34 Trigonometric Formulas

  1. 1. Maths 3/4: Trigonometry - Formulas & Identities 1. Trigonometric Functions of Acute Angles sin X = a / c csc X = c / a Basic tan X = a / b cot X = b / a cos X = b / c sec X = c / b 2. Special Triangles Special triangles may be used to find trigonometric functions of special angles: 30, 45 and 60 degress. 3. Sine and Cosine Laws in Triangles 3.1 - The sine law sin A/a = sin B/b = sin C/c 3.2 - The cosine laws
  2. 2. a 2 = b 2 + c 2 - 2bc cos A b 2 = a 2 + c 2 - 2ac cos B c 2 = a 2 + b 2 - 2ab cos C 4. Relations Between Trigonometric Functions cscX = 1 / sinX, sinX = 1 / cscX secX = 1 / cosX, cosX = 1 / secX tanX = 1 / cotX, cotX = 1 / tanX tanX = sinX / cosX, cotX = cosX / sinX 5. Pythagorean Identities sin 2X + cos 2X = 1 1 + tan 2X = sec 2X 1 + cot 2X = csc 2X 6. Negative Angle Identities sin(-X) = - sinX , odd function csc(-X) = - cscX , odd function cos(-X) = cosX , even function sec(-X) = secX , even function tan(-X) = - tanX , odd function cot(-X) = - cotX , odd function 7. Cofunctions Identities sin(pi/2 - X) = cosX cos(pi/2 - X) = sinX tan(pi/2 - X) = cotX
  3. 3. cot(pi/2 - X) = tanX sec(pi/2 - X) = cscX csc(pi/2 - X) = secX 8. Addition Formulas cos(X + Y) = cosX cosY - sinX sinY cos(X - Y) = cosX cosY + sinX sinY sin(X + Y) = sinX cosY + cosX sinY sin(X - Y) = sinX cosY - cosX sinY tan(X + Y) = [ tanX + tanY ] / [ 1 - tanX tanY] tan(X - Y) = [ tanX - tanY ] / [ 1 + tanX tanY] cot(X + Y) = [ cotX cotY - 1 ] / [ cotX + cotY] cot(X - Y) = [ cotX cotY + 1 ] / [ cotX - cotY] 9. Sum to Product Formulas cosX + cosY = 2cos[ (X + Y) / 2 ] cos[ (X - Y) / 2 ] sinX + sinY = 2sin[ (X + Y) / 2 ] cos[ (X - Y) / 2 ] 10. Difference to Product Formulas cosX - cosY = - 2sin[ (X + Y) / 2 ] sin[ (X - Y) / 2 ] sinX - sinY = 2cos[ (X + Y) / 2 ] sin[ (X - Y) / 2 ] 11. Product to Sum/Difference Formulas cosX cosY = (1/2) [ cos (X - Y) + cos (X + Y) ] sinX cosY = (1/2) [ sin (X + Y) + sin (X - Y) ] cosX sinY = (1/2) [ sin (X + Y) - sin[ (X - Y) ] sinX sinY = (1/2) [ cos (X - Y) - cos (X + Y) ] 12. Difference of Squares Formulas sin 2X - sin 2Y = sin(X + Y)sin(X - Y) cos 2X - cos 2Y = - sin(X + Y)sin(X - Y) cos 2X - sin 2Y = cos(X + Y)cos(X - Y) 13. Double Angle Formulas
  4. 4. sin(2X) = 2 sinX cosX cos(2X) = 1 - 2sin 2X = 2cos 2X - 1 tan(2X) = 2tanX / [ 1 - tan 2X ] 14. Multiple Angle Formulas sin(3X) = 3sinX - 4sin 3X cos(3X) = 4cos 3X - 3cosX sin(4X) = 4sinXcosX - 8sin 3XcosX cos(4X) = 8cos 4X - 8cos 2X + 1 15. Half Angle Formulas sin (X/2) = + or - SQRT [ (1 - cosX) / 2 ] cos (X/2) = + or - SQRT [ (1 + cosX) / 2 ] tan (X/2) = + or - SQRT [ (1 - cosX) / (1 - cosX) ] = sinX / (1 + cosX) = (1 - cosX) / sinX 16. Power Reducing Formulas sin 2X = 1/2 - (1/2)cos(2X)) cos 2X = 1/2 + (1/2)cos(2X)) sin 3X = (3/4)sinX - (1/4)sin(3X) cos 3X = (3/4)cosX + (1/4)cos(3X) sin 4X = (3/8) - (1/2)cos(2X) + (1/8)cos(4X) cos 4X = (3/8) + (1/2)cos(2X) + (1/8)cos(4X) sin 5X = (5/8)sinX - (5/16)sin(3X) + (1/16)sin(5X) cos 5X = (5/8)cosX + (5/16)cos(3X) + (1/16)cos(5X) sin 6X = 5/16 - (15/32)cos(2X) + (6/32)cos(4X) - (1/32)cos(6X) cos 6X = 5/16 + (15/32)cos(2X) + (6/32)cos(4X) + (1/32)cos(6X) 16. Trigonometric Functions Periodicity sin (X + 2Pi) = sin X , period 2Pi cos (X + 2Pi) = cos X , period 2Pi sec (X + 2Pi) = sec X , period 2Pi csc (X + 2Pi) = csc X , period 2Pi tan (X + Pi) = tan X , period Pi cot (X + Pi) = cot X , period Pi
  5. 5. 17. Graphs: 17.1. Sine Function : f(x) = sin (x) 17.2. Cosine Function : f(x) = cos (x) 17.3. Tangent Function : f(x) = tan (x)
  6. 6. 17.4. Cotangent Function : f(x) = cot (x) 17.5. Secant Function : f(x) = sec (x) 17.6. Cosecant Function : f(x) = csc (x)

×