slide deck

509 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
509
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
10
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

slide deck

  1. 1. The Text Analytics Market(s) Competitive landscape and trends by Curt A. Monash, Ph.D. President, Monash Research Editor, Text Technologies [email_address] http://www.monash.com http://www.texttechnologies.com
  2. 2. 8 linguistics-based businesses <ul><li>Web search </li></ul><ul><li>Public-facing site search </li></ul><ul><li>Enterprise search & knowledge management </li></ul><ul><li>Custom publishing </li></ul><ul><li>Text mining and extraction </li></ul><ul><li>Spam filtering </li></ul><ul><li>Voice recognition </li></ul><ul><li>Machine translation </li></ul>
  3. 3. Web search <ul><li>Giant oligopoly </li></ul><ul><ul><li>It's a huge business </li></ul></ul><ul><ul><li>It's consolidating down to two vendors that matter </li></ul></ul><ul><ul><ul><li>If anybody but Google matters at all </li></ul></ul></ul><ul><ul><li>Startups aren't gaining traction </li></ul></ul><ul><li>Three kinds of search </li></ul><ul><ul><li>Navigational </li></ul></ul><ul><ul><li>Informational </li></ul></ul><ul><ul><li>Transactional </li></ul></ul>
  4. 4. Web search vendor issues today <ul><li>Physical efficiency </li></ul><ul><li>Adversarial information retrieval </li></ul><ul><li>Monetization </li></ul><ul><li>Regulation </li></ul><ul><li>Branding </li></ul>
  5. 5. Future web search issues <ul><li>Better popularity metrics </li></ul><ul><li>Better use of context </li></ul><ul><ul><li>Geography!! </li></ul></ul><ul><li>Sub-page retrieval </li></ul><ul><li>Looking through security barriers </li></ul><ul><li>Better UIs </li></ul>
  6. 6. Public-facing site search <ul><li>It has dual goals </li></ul><ul><ul><li>What the user actually wants </li></ul></ul><ul><ul><li>What you want the user to see </li></ul></ul><ul><li>E-commerce and general search are separate businesses </li></ul><ul><ul><li>E-commerce = province of smaller vendors </li></ul></ul><ul><ul><li>General = province of search, portal, or CMS vendors </li></ul></ul><ul><li>Hand-tagging is key </li></ul>
  7. 7. Enterprise search & KM (inward-facing) <ul><li>For decades there was only one kind of text analytics … </li></ul><ul><li>… but that was asking too much of one technology </li></ul><ul><li>Now enterprise search is more circumscribed … </li></ul><ul><li>… but things are still convoluted </li></ul><ul><ul><li>Complex needs </li></ul></ul><ul><ul><ul><li>Multiple kinds of search </li></ul></ul></ul><ul><ul><ul><li>Unique technical challenges </li></ul></ul></ul><ul><ul><ul><li>Multiple purchase drivers </li></ul></ul></ul><ul><ul><li>Confused market </li></ul></ul><ul><ul><ul><li>One-size-fits-all strategy </li></ul></ul></ul><ul><ul><ul><li>Users want portal integration </li></ul></ul></ul><ul><ul><ul><li>Investment is fragmented </li></ul></ul></ul>
  8. 8. Kinds of enterprise search <ul><li>Find a specific document </li></ul><ul><li>Find an answer </li></ul><ul><li>Find ALL documents </li></ul><ul><li>Find an expert </li></ul>
  9. 9. Technical challenges in enterprise search <ul><li>Documents may not exist </li></ul><ul><li>Many formats </li></ul><ul><li>Corpus weighting </li></ul><ul><li>No good popularity metrics </li></ul><ul><li>Security </li></ul><ul><li>Ease of adoption!!! </li></ul>
  10. 10. Many reasons to buy enterprise search <ul><li>General productivity </li></ul><ul><ul><li>Sure beats looking through file cabinets </li></ul></ul><ul><li>“ Wouldn't it be nice if ...” </li></ul><ul><ul><li>KM dreams </li></ul></ul><ul><li>Compliance </li></ul><ul><ul><li>“ Thou shalt … </li></ul></ul><ul><li>Not all the reasons are good </li></ul>
  11. 11. One-size-fits-all didn't work <ul><li>Overreaching had a lot to do with that </li></ul><ul><li>E-commerce search isn't general search </li></ul><ul><li>Text mining isn't search (or clustering) </li></ul><ul><li>Custom publishing isn't exactly search </li></ul>
  12. 12. Custom publishing <ul><li>More precise than search </li></ul><ul><ul><li>Sophisticated extraction </li></ul></ul><ul><ul><li>Focus on document parts </li></ul></ul><ul><li>Started with technical publishers (and intelligence) </li></ul><ul><li>Expanded to </li></ul><ul><ul><li>Other technical documents </li></ul></ul><ul><ul><li>Other publishers </li></ul></ul><ul><li>Players </li></ul><ul><ul><li>Mark Logic </li></ul></ul><ul><ul><li>Various text miners </li></ul></ul><ul><ul><li>Various search vendors </li></ul></ul>
  13. 13. Bollixed enterprise search market landscape <ul><li>Multiple generations of vendors flamed out </li></ul><ul><ul><li>Verity </li></ul></ul><ul><ul><li>Excalibur (endlessly backed by Allen & Company) </li></ul></ul><ul><ul><li>Fulcrum et al. </li></ul></ul><ul><ul><li>FAST </li></ul></ul><ul><li>Google has brand name, ease of installation </li></ul><ul><li>Microsoft, Oracle, SAP, and Autonomy are all confused </li></ul><ul><li>Products are sold for inappropriate apps </li></ul><ul><li>Compliance is driving demand </li></ul><ul><li>Small vendors are ... small </li></ul>
  14. 14. Text mining <ul><li>Really about sophisticated extraction </li></ul><ul><li>Apps and verticals mirror data mining </li></ul><ul><li>The action is in sentiment analysis ... </li></ul><ul><li>... and ease of use </li></ul><ul><li>Otherwise the industry seems tired </li></ul>
  15. 15. The original text mining apps: Early warning <ul><li>Source: July, 2006 post on Text Technologies </li></ul><ul><li>Vehicle safety </li></ul><ul><li>Other manufacturing/warranty analysis apps </li></ul><ul><li>Reputation management </li></ul><ul><li>Other customer sentiment apps </li></ul><ul><li>Anti-terrorism </li></ul><ul><li>Sarbanes-Oxley compliance </li></ul><ul><li>(continued …) </li></ul>
  16. 16. More early warning <ul><li>(… continued) </li></ul><ul><li>Antifraud </li></ul><ul><li>Stopping money laundering </li></ul><ul><li>Clinical applications (some) </li></ul><ul><li>Early insurance risk management apps </li></ul><ul><li>Early experimental hedge fund apps </li></ul><ul><li>Employee (dis)satisfaction (missing from the original list) </li></ul>
  17. 17. Customer/market intelligence <ul><li>Now drive text mining growth </li></ul><ul><ul><li>Internal Voice of the Customer came first </li></ul></ul><ul><ul><li>Voice of the Market has blended in </li></ul></ul><ul><li>Sales, buying, and delivery practices are in line </li></ul><ul><ul><li>Departmental buying </li></ul></ul><ul><ul><li>SaaS delivery </li></ul></ul><ul><li>Many vendors focus(ing) on this segment: </li></ul><ul><ul><li>Attensity </li></ul></ul><ul><ul><li>Clarabridge </li></ul></ul><ul><ul><li>SAS </li></ul></ul><ul><ul><li>SPSS </li></ul></ul><ul><ul><li>Expert System S.p.A </li></ul></ul>
  18. 18. Three ways to use text mining <ul><li>Business intelligence </li></ul><ul><ul><li>Reports, dashboards </li></ul></ul><ul><ul><li>Attensity, Clarabridge </li></ul></ul><ul><li>Predictive analytics </li></ul><ul><ul><li>Data mining </li></ul></ul><ul><ul><li>SAS, SPSS </li></ul></ul><ul><li>Custom publishing </li></ul><ul><ul><li>nStein et al. </li></ul></ul><ul><ul><li>Lots of partnerships </li></ul></ul>
  19. 19. Six trends that could shake up the market <ul><li>Web/enterprise/messaging integration </li></ul><ul><li>BI integration </li></ul><ul><li>Universal message retention </li></ul><ul><li>Portable personal profiles </li></ul><ul><li>Electronic health records </li></ul><ul><li>Voice command & control </li></ul>
  20. 20. Further information Curt A. Monash, Ph.D. President, Monash Research Editor, Text Technologies [email_address] http://www.monash.com http://www.texttechnologies.com

×