Data Mining By Dave Maung
What is Data Mining? <ul><li>The process of automatically searching large volumes of data for patterns.  </li></ul><ul><li...
Different types of Data Mining <ul><li>Relational data mining  </li></ul><ul><li>Text mining  </li></ul><ul><li>Web mining...
Relational Data Mining <ul><li>Data mining technique for relational databases  </li></ul><ul><li>Relational data mining al...
Classification <ul><li>Predicting an item class </li></ul><ul><li>Finding rules that partition the given data into disjoin...
Decision Tree <ul><li>A graph of decisions and their possible consequences </li></ul><ul><li>Decision trees are constructe...
Example of Decision Tree
Text Mining <ul><li>Is the process of  </li></ul><ul><ul><li>extracting interesting  </li></ul></ul><ul><ul><li>non-trivia...
Text Mining (continued) <ul><li>Also known as  </li></ul><ul><ul><li>intelligent text analysis </li></ul></ul><ul><ul><li>...
Web Mining <ul><li>Is the extraction of interesting potentially useful patterns </li></ul><ul><li>Implicit information fro...
Web Mining (continued) <ul><li>Three knowledge discovery domains that pertain to web mining </li></ul><ul><ul><li>Web Cont...
Web Content Mining <ul><li>Is an automatic process that goes beyond keyword extraction.  </li></ul><ul><li>There are two g...
Web Structure Mining <ul><li>Is Worldwide Web can reveal more information than just the information contained in documents...
Web Structure Mining (example) <ul><li>Links pointing to a document indicate the popularity of the document. </li></ul><ul...
Web Usage Mining <ul><li>Web servers record and accumulate data about user interactions whenever requests for resources ar...
Web Usage Mining <ul><li>Two main tendencies in Web Usage Mining driven:  </li></ul><ul><ul><li>General Access Pattern Tra...
General access pattern  <ul><li>Analyzes the web logs to understand access patterns and trends  </li></ul><ul><li>Give bet...
Customized usage tracking  <ul><li>Analyzes individual trends  </li></ul><ul><li>To customize web sites to users </li></ul...
Web Mining Architecture
Reference <ul><li>http://wikipedia.com </li></ul>
Upcoming SlideShare
Loading in …5
×

Data_Mining_by_Dave_Maung.ppt

549 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
549
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Data_Mining_by_Dave_Maung.ppt

  1. 1. Data Mining By Dave Maung
  2. 2. What is Data Mining? <ul><li>The process of automatically searching large volumes of data for patterns. </li></ul><ul><li>Also known as KDD Knowledge-Discovery. </li></ul>
  3. 3. Different types of Data Mining <ul><li>Relational data mining </li></ul><ul><li>Text mining </li></ul><ul><li>Web mining </li></ul>
  4. 4. Relational Data Mining <ul><li>Data mining technique for relational databases </li></ul><ul><li>Relational data mining algorithms look for patterns among multiple tables </li></ul><ul><li>Used classification rules and Association rules </li></ul>
  5. 5. Classification <ul><li>Predicting an item class </li></ul><ul><li>Finding rules that partition the given data into disjoints groups </li></ul><ul><li>Popular classification Methods is decision tree </li></ul>
  6. 6. Decision Tree <ul><li>A graph of decisions and their possible consequences </li></ul><ul><li>Decision trees are constructed to help making decisions. </li></ul><ul><li>A decision tree used tree structure. </li></ul>
  7. 7. Example of Decision Tree
  8. 8. Text Mining <ul><li>Is the process of </li></ul><ul><ul><li>extracting interesting </li></ul></ul><ul><ul><li>non-trivial information </li></ul></ul><ul><ul><li>knowledge from unstructured text </li></ul></ul>
  9. 9. Text Mining (continued) <ul><li>Also known as </li></ul><ul><ul><li>intelligent text analysis </li></ul></ul><ul><ul><li>text data mining </li></ul></ul><ul><ul><li>unstructured data management </li></ul></ul><ul><ul><li>or knowledge-discovery in text </li></ul></ul>
  10. 10. Web Mining <ul><li>Is the extraction of interesting potentially useful patterns </li></ul><ul><li>Implicit information from artifacts </li></ul><ul><li>Activity related to the Worldwide Web </li></ul>
  11. 11. Web Mining (continued) <ul><li>Three knowledge discovery domains that pertain to web mining </li></ul><ul><ul><li>Web Content Mining, </li></ul></ul><ul><ul><li>Web Structure Mining, </li></ul></ul><ul><ul><li>Web Usage Mining </li></ul></ul>
  12. 12. Web Content Mining <ul><li>Is an automatic process that goes beyond keyword extraction. </li></ul><ul><li>There are two groups of web content mining strategies: </li></ul><ul><ul><li>mine the content of documents </li></ul></ul><ul><ul><li>improve on the content search of other tools like search engines. </li></ul></ul>
  13. 13. Web Structure Mining <ul><li>Is Worldwide Web can reveal more information than just the information contained in documents </li></ul>
  14. 14. Web Structure Mining (example) <ul><li>Links pointing to a document indicate the popularity of the document. </li></ul><ul><li>Links coming out of a document indicate the richness or perhaps the variety of topics covered in the document. </li></ul>
  15. 15. Web Usage Mining <ul><li>Web servers record and accumulate data about user interactions whenever requests for resources are received. </li></ul><ul><li>Analyzing the web access logs of different web sites </li></ul>
  16. 16. Web Usage Mining <ul><li>Two main tendencies in Web Usage Mining driven: </li></ul><ul><ul><li>General Access Pattern Tracking </li></ul></ul><ul><ul><li>Customized Usage Tracking </li></ul></ul>
  17. 17. General access pattern <ul><li>Analyzes the web logs to understand access patterns and trends </li></ul><ul><li>Give better structure and grouping of resource providers </li></ul><ul><li>Can be used to restructure sites in a more efficient grouping, and target specific users for specific selling ads </li></ul>
  18. 18. Customized usage tracking <ul><li>Analyzes individual trends </li></ul><ul><li>To customize web sites to users </li></ul><ul><li>Success of Application depends on what and how much valid and reliable knowledge one can discover from the large raw log data. </li></ul>
  19. 19. Web Mining Architecture
  20. 20. Reference <ul><li>http://wikipedia.com </li></ul>

×