SlideShare a Scribd company logo
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Team Pumpkin-Pie
T. Carpi
M. Edemanti
E. Kamberoski
E. Sacchi
R. Pagano
P. Cremonesi
M. Quadrana
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Outline
• Collaborative Filtering
• Content-Based
• Interactions and Impressions
• Multi-Stack Ensemble
• Linear Ensemble
• Evaluation Score Ensemble
• Conclusions
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Collaborative-Filtering
IDF value as a rate for the job
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Collaborative-Filtering
User-based
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Collaborative-Filtering
Item-based
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Content-Based
Concept-based
IDF value as a weight for the tag
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Content-Based
Concept-based joint User-Item similarity
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Interactions & Impressions
Click
ReplyBookmark
Already clicked jobs are likely to
be clicked again
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Interactions & Impressions
A B C D E F
B C DA
B D AC
Dataset
Filtering-step
Reordering-step
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Multi-Stack Ensemble
Past
Interactions
Ens CF
Past
Impressions
UBCF 

IntInt
UBCF
IntImp
UBCF
ImpImp
UBCF
ImpInt
IBCF 

IntInt
IBCF
ImpImp
CBJUIS CBIS
Baseline
Ens 

CF+CB
Ens CB
Final
Ensemble
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Multi-Stack Ensemble
Ens CF
UBCF 

IntInt
UBCF
IntImp
UBCF
ImpImp
UBCF
ImpInt
IBCF 

IntInt
IBCF
ImpImp
CBJUIS CBIS
Ens CB
Stack Level 1
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Multi-Stack Ensemble
Ens CF
UBCF 

IntInt
UBCF
IntImp
UBCF
ImpImp
UBCF
ImpInt
IBCF 

IntInt
IBCF
ImpImp
CBJUIS CBIS
Ens 

CF+CB
Ens CB
Stack Level 2
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Multi-Stack Ensemble
Past
Interactions
Ens CF
Past
Impressions
UBCF 

IntInt
UBCF
IntImp
UBCF
ImpImp
UBCF
ImpInt
IBCF 

IntInt
IBCF
ImpImp
CBJUIS CBIS
Baseline
Ens 

CF+CB
Ens CB
Final
Ensemble
Stack Level 3
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Linear Ensemble
weight for algorithm a
rank of item i in algorithm a
decay for algorithm a
Politecnico di Milano Team Pumpkin-Pie09-15-2016
red 1.9990
pink 1.9980
yellow 1.9970
blue 1.9960
green 1.9985
orange 1.9970
purple 1.9955
red 1.9940
Algorithm A
Weight 2
Decay 0.001
Algorithm B
Weight 2
Decay 0.0015
Linear Ensemble
1
2
3
4
1
2
3
4
Politecnico di Milano Team Pumpkin-Pie09-15-2016
pink 1.9980
yellow 1.9970
blue 1.9960
green 1.9985
orange 1.9970
purple 1.9955
Algorithm A
Weight 2
Decay 0.001
Algorithm B
Weight 2
Decay 0.0015
Linear Ensemble
red 3.9930
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Linear Ensemble
Past
Interactions
Ens CF
Past
Impressions
UBCF 

IntInt
UBCF
IntImp
UBCF
ImpImp
UBCF
ImpInt
IBCF 

IntInt
IBCF
ImpImp
CBJUIS CBIS
Baseline
Ens 

CF+CB
Ens CB
Final
Ensemble
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Evaluation-Score Ensemble
leaderbord score
# of elements
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Evaluation-Score Ensemble
red 7.5660
pink 7.5660
purple 5.5660
orange 5.5660
yellow 9.4575
green 9.4575
blue 6.9575
grey 6.9575
Algorithm A
l_a 200k
n_a 1 Mln
Weight 0.2
Algorithm B
l_b 200k
n_b 800k
Weight 0.25
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Evaluation-Score Ensemble
red 7.5660
pink 7.5660
purple 5.5660
orange 5.5660
yellow 9.4575
green 9.4575
blue 6.9575
grey 6.9575
Algorithm A
l_a 200k
n_a 1 Mln
Weight 0.2
Algorithm B
l_b 200k
n_b 800k
Weight 0.25
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Evaluation-Score Ensemble
Past
Interactions
Ens CF
Past
Impressions
UBCF 

IntInt
UBCF
IntImp
UBCF
ImpImp
UBCF
ImpInt
IBCF 

IntInt
IBCF
ImpImp
CBJUIS CBIS
Baseline
Ens 

CF+CB
Ens CB
Final
Ensemble
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Conclusions
Competition promotes the algorithms that learn
which are the best items among the ones
recommended by the Xing platform
Politecnico di Milano Team Pumpkin-Pie09-15-2016
Conclusions
Multi-Stack Ensemble
4th Place
Team Pumpkin-Pie

More Related Content

Viewers also liked

allegrotech - Data science meetup #1 Intro
allegrotech - Data science  meetup #1 Introallegrotech - Data science  meetup #1 Intro
allegrotech - Data science meetup #1 IntroBartlomiej Twardowski
 
Warsaw Data Science - Factorization Machines Introduction
Warsaw Data Science -  Factorization Machines IntroductionWarsaw Data Science -  Factorization Machines Introduction
Warsaw Data Science - Factorization Machines IntroductionBartlomiej Twardowski
 
Systemy rekomendacji, Algorytmy rankingu Top-N rekomendacji bazujące na nieja...
Systemy rekomendacji, Algorytmy rankingu Top-N rekomendacji bazujące na nieja...Systemy rekomendacji, Algorytmy rankingu Top-N rekomendacji bazujące na nieja...
Systemy rekomendacji, Algorytmy rankingu Top-N rekomendacji bazujące na nieja...Bartlomiej Twardowski
 
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...Bartlomiej Twardowski
 
Warsaw Data Science - Recsys2016 Quick Review
Warsaw Data Science - Recsys2016 Quick ReviewWarsaw Data Science - Recsys2016 Quick Review
Warsaw Data Science - Recsys2016 Quick ReviewBartlomiej Twardowski
 
Prezentacja z Big Data Tech 2016: Machine Learning vs Big Data
Prezentacja z Big Data Tech 2016: Machine Learning vs Big DataPrezentacja z Big Data Tech 2016: Machine Learning vs Big Data
Prezentacja z Big Data Tech 2016: Machine Learning vs Big DataBartlomiej Twardowski
 
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...Bartlomiej Twardowski
 
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...Xavier Amatriain
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender SystemsT212
 
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Xavier Amatriain
 

Viewers also liked (10)

allegrotech - Data science meetup #1 Intro
allegrotech - Data science  meetup #1 Introallegrotech - Data science  meetup #1 Intro
allegrotech - Data science meetup #1 Intro
 
Warsaw Data Science - Factorization Machines Introduction
Warsaw Data Science -  Factorization Machines IntroductionWarsaw Data Science -  Factorization Machines Introduction
Warsaw Data Science - Factorization Machines Introduction
 
Systemy rekomendacji, Algorytmy rankingu Top-N rekomendacji bazujące na nieja...
Systemy rekomendacji, Algorytmy rankingu Top-N rekomendacji bazujące na nieja...Systemy rekomendacji, Algorytmy rankingu Top-N rekomendacji bazujące na nieja...
Systemy rekomendacji, Algorytmy rankingu Top-N rekomendacji bazujące na nieja...
 
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...
Rekomendujemy - Szybkie wprowadzenie do systemów rekomendacji oraz trochę wie...
 
Warsaw Data Science - Recsys2016 Quick Review
Warsaw Data Science - Recsys2016 Quick ReviewWarsaw Data Science - Recsys2016 Quick Review
Warsaw Data Science - Recsys2016 Quick Review
 
Prezentacja z Big Data Tech 2016: Machine Learning vs Big Data
Prezentacja z Big Data Tech 2016: Machine Learning vs Big DataPrezentacja z Big Data Tech 2016: Machine Learning vs Big Data
Prezentacja z Big Data Tech 2016: Machine Learning vs Big Data
 
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...
Recsys 2016: Modeling Contextual Information in Session-Aware Recommender Sys...
 
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
 

Recently uploaded

一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理cyebo
 
一比一原版西悉尼大学毕业证成绩单如何办理
一比一原版西悉尼大学毕业证成绩单如何办理一比一原版西悉尼大学毕业证成绩单如何办理
一比一原版西悉尼大学毕业证成绩单如何办理pyhepag
 
2024 Q1 Tableau User Group Leader Quarterly Call
2024 Q1 Tableau User Group Leader Quarterly Call2024 Q1 Tableau User Group Leader Quarterly Call
2024 Q1 Tableau User Group Leader Quarterly Calllward7
 
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPs
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPsWebinar One View, Multiple Systems No-Code Integration of Salesforce and ERPs
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPsCEPTES Software Inc
 
一比一原版纽卡斯尔大学毕业证成绩单如何办理
一比一原版纽卡斯尔大学毕业证成绩单如何办理一比一原版纽卡斯尔大学毕业证成绩单如何办理
一比一原版纽卡斯尔大学毕业证成绩单如何办理cyebo
 
Supply chain analytics to combat the effects of Ukraine-Russia-conflict
Supply chain analytics to combat the effects of Ukraine-Russia-conflictSupply chain analytics to combat the effects of Ukraine-Russia-conflict
Supply chain analytics to combat the effects of Ukraine-Russia-conflictJack Cole
 
Tabula.io Cheatsheet: automate your data workflows
Tabula.io Cheatsheet: automate your data workflowsTabula.io Cheatsheet: automate your data workflows
Tabula.io Cheatsheet: automate your data workflowsalex933524
 
AI Imagen for data-storytelling Infographics.pdf
AI Imagen for data-storytelling Infographics.pdfAI Imagen for data-storytelling Infographics.pdf
AI Imagen for data-storytelling Infographics.pdfMichaelSenkow
 
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...elinavihriala
 
Fuzzy Sets decision making under information of uncertainty
Fuzzy Sets decision making under information of uncertaintyFuzzy Sets decision making under information of uncertainty
Fuzzy Sets decision making under information of uncertaintyRafigAliyev2
 
Atlantic Grupa Case Study (Mintec Data AI)
Atlantic Grupa Case Study (Mintec Data AI)Atlantic Grupa Case Study (Mintec Data AI)
Atlantic Grupa Case Study (Mintec Data AI)Jon Hansen
 
2024 Q2 Orange County (CA) Tableau User Group Meeting
2024 Q2 Orange County (CA) Tableau User Group Meeting2024 Q2 Orange County (CA) Tableau User Group Meeting
2024 Q2 Orange County (CA) Tableau User Group MeetingAlison Pitt
 
basics of data science with application areas.pdf
basics of data science with application areas.pdfbasics of data science with application areas.pdf
basics of data science with application areas.pdfvyankatesh1
 
一比一原版阿德莱德大学毕业证成绩单如何办理
一比一原版阿德莱德大学毕业证成绩单如何办理一比一原版阿德莱德大学毕业证成绩单如何办理
一比一原版阿德莱德大学毕业证成绩单如何办理pyhepag
 
how can i exchange pi coins for others currency like Bitcoin
how can i exchange pi coins for others currency like Bitcoinhow can i exchange pi coins for others currency like Bitcoin
how can i exchange pi coins for others currency like BitcoinDOT TECH
 
MALL CUSTOMER SEGMENTATION USING K-MEANS CLUSTERING.pptx
MALL CUSTOMER SEGMENTATION USING K-MEANS CLUSTERING.pptxMALL CUSTOMER SEGMENTATION USING K-MEANS CLUSTERING.pptx
MALL CUSTOMER SEGMENTATION USING K-MEANS CLUSTERING.pptxNidaFaviankaNawawi
 
How I opened a fake bank account and didn't go to prison
How I opened a fake bank account and didn't go to prisonHow I opened a fake bank account and didn't go to prison
How I opened a fake bank account and didn't go to prisonPayment Village
 

Recently uploaded (20)

一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理
 
一比一原版西悉尼大学毕业证成绩单如何办理
一比一原版西悉尼大学毕业证成绩单如何办理一比一原版西悉尼大学毕业证成绩单如何办理
一比一原版西悉尼大学毕业证成绩单如何办理
 
2024 Q1 Tableau User Group Leader Quarterly Call
2024 Q1 Tableau User Group Leader Quarterly Call2024 Q1 Tableau User Group Leader Quarterly Call
2024 Q1 Tableau User Group Leader Quarterly Call
 
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPs
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPsWebinar One View, Multiple Systems No-Code Integration of Salesforce and ERPs
Webinar One View, Multiple Systems No-Code Integration of Salesforce and ERPs
 
Machine Learning for Accident Severity Prediction
Machine Learning for Accident Severity PredictionMachine Learning for Accident Severity Prediction
Machine Learning for Accident Severity Prediction
 
一比一原版纽卡斯尔大学毕业证成绩单如何办理
一比一原版纽卡斯尔大学毕业证成绩单如何办理一比一原版纽卡斯尔大学毕业证成绩单如何办理
一比一原版纽卡斯尔大学毕业证成绩单如何办理
 
Supply chain analytics to combat the effects of Ukraine-Russia-conflict
Supply chain analytics to combat the effects of Ukraine-Russia-conflictSupply chain analytics to combat the effects of Ukraine-Russia-conflict
Supply chain analytics to combat the effects of Ukraine-Russia-conflict
 
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotecAbortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
 
Tabula.io Cheatsheet: automate your data workflows
Tabula.io Cheatsheet: automate your data workflowsTabula.io Cheatsheet: automate your data workflows
Tabula.io Cheatsheet: automate your data workflows
 
AI Imagen for data-storytelling Infographics.pdf
AI Imagen for data-storytelling Infographics.pdfAI Imagen for data-storytelling Infographics.pdf
AI Imagen for data-storytelling Infographics.pdf
 
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
 
Fuzzy Sets decision making under information of uncertainty
Fuzzy Sets decision making under information of uncertaintyFuzzy Sets decision making under information of uncertainty
Fuzzy Sets decision making under information of uncertainty
 
Slip-and-fall Injuries: Top Workers' Comp Claims
Slip-and-fall Injuries: Top Workers' Comp ClaimsSlip-and-fall Injuries: Top Workers' Comp Claims
Slip-and-fall Injuries: Top Workers' Comp Claims
 
Atlantic Grupa Case Study (Mintec Data AI)
Atlantic Grupa Case Study (Mintec Data AI)Atlantic Grupa Case Study (Mintec Data AI)
Atlantic Grupa Case Study (Mintec Data AI)
 
2024 Q2 Orange County (CA) Tableau User Group Meeting
2024 Q2 Orange County (CA) Tableau User Group Meeting2024 Q2 Orange County (CA) Tableau User Group Meeting
2024 Q2 Orange County (CA) Tableau User Group Meeting
 
basics of data science with application areas.pdf
basics of data science with application areas.pdfbasics of data science with application areas.pdf
basics of data science with application areas.pdf
 
一比一原版阿德莱德大学毕业证成绩单如何办理
一比一原版阿德莱德大学毕业证成绩单如何办理一比一原版阿德莱德大学毕业证成绩单如何办理
一比一原版阿德莱德大学毕业证成绩单如何办理
 
how can i exchange pi coins for others currency like Bitcoin
how can i exchange pi coins for others currency like Bitcoinhow can i exchange pi coins for others currency like Bitcoin
how can i exchange pi coins for others currency like Bitcoin
 
MALL CUSTOMER SEGMENTATION USING K-MEANS CLUSTERING.pptx
MALL CUSTOMER SEGMENTATION USING K-MEANS CLUSTERING.pptxMALL CUSTOMER SEGMENTATION USING K-MEANS CLUSTERING.pptx
MALL CUSTOMER SEGMENTATION USING K-MEANS CLUSTERING.pptx
 
How I opened a fake bank account and didn't go to prison
How I opened a fake bank account and didn't go to prisonHow I opened a fake bank account and didn't go to prison
How I opened a fake bank account and didn't go to prison
 

RecSys Multi-Stack Ensemble for Job Recommendation, Pumpkin-Pie

  • 1. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Team Pumpkin-Pie T. Carpi M. Edemanti E. Kamberoski E. Sacchi R. Pagano P. Cremonesi M. Quadrana
  • 2. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Outline • Collaborative Filtering • Content-Based • Interactions and Impressions • Multi-Stack Ensemble • Linear Ensemble • Evaluation Score Ensemble • Conclusions
  • 3. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Collaborative-Filtering IDF value as a rate for the job
  • 4. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Collaborative-Filtering User-based
  • 5. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Collaborative-Filtering Item-based
  • 6. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Content-Based Concept-based IDF value as a weight for the tag
  • 7. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Content-Based Concept-based joint User-Item similarity
  • 8. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Interactions & Impressions Click ReplyBookmark Already clicked jobs are likely to be clicked again
  • 9. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Interactions & Impressions A B C D E F B C DA B D AC Dataset Filtering-step Reordering-step
  • 10. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Multi-Stack Ensemble Past Interactions Ens CF Past Impressions UBCF 
 IntInt UBCF IntImp UBCF ImpImp UBCF ImpInt IBCF 
 IntInt IBCF ImpImp CBJUIS CBIS Baseline Ens 
 CF+CB Ens CB Final Ensemble
  • 11. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Multi-Stack Ensemble Ens CF UBCF 
 IntInt UBCF IntImp UBCF ImpImp UBCF ImpInt IBCF 
 IntInt IBCF ImpImp CBJUIS CBIS Ens CB Stack Level 1
  • 12. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Multi-Stack Ensemble Ens CF UBCF 
 IntInt UBCF IntImp UBCF ImpImp UBCF ImpInt IBCF 
 IntInt IBCF ImpImp CBJUIS CBIS Ens 
 CF+CB Ens CB Stack Level 2
  • 13. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Multi-Stack Ensemble Past Interactions Ens CF Past Impressions UBCF 
 IntInt UBCF IntImp UBCF ImpImp UBCF ImpInt IBCF 
 IntInt IBCF ImpImp CBJUIS CBIS Baseline Ens 
 CF+CB Ens CB Final Ensemble Stack Level 3
  • 14. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Linear Ensemble weight for algorithm a rank of item i in algorithm a decay for algorithm a
  • 15. Politecnico di Milano Team Pumpkin-Pie09-15-2016 red 1.9990 pink 1.9980 yellow 1.9970 blue 1.9960 green 1.9985 orange 1.9970 purple 1.9955 red 1.9940 Algorithm A Weight 2 Decay 0.001 Algorithm B Weight 2 Decay 0.0015 Linear Ensemble 1 2 3 4 1 2 3 4
  • 16. Politecnico di Milano Team Pumpkin-Pie09-15-2016 pink 1.9980 yellow 1.9970 blue 1.9960 green 1.9985 orange 1.9970 purple 1.9955 Algorithm A Weight 2 Decay 0.001 Algorithm B Weight 2 Decay 0.0015 Linear Ensemble red 3.9930
  • 17. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Linear Ensemble Past Interactions Ens CF Past Impressions UBCF 
 IntInt UBCF IntImp UBCF ImpImp UBCF ImpInt IBCF 
 IntInt IBCF ImpImp CBJUIS CBIS Baseline Ens 
 CF+CB Ens CB Final Ensemble
  • 18. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Evaluation-Score Ensemble leaderbord score # of elements
  • 19. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Evaluation-Score Ensemble red 7.5660 pink 7.5660 purple 5.5660 orange 5.5660 yellow 9.4575 green 9.4575 blue 6.9575 grey 6.9575 Algorithm A l_a 200k n_a 1 Mln Weight 0.2 Algorithm B l_b 200k n_b 800k Weight 0.25
  • 20. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Evaluation-Score Ensemble red 7.5660 pink 7.5660 purple 5.5660 orange 5.5660 yellow 9.4575 green 9.4575 blue 6.9575 grey 6.9575 Algorithm A l_a 200k n_a 1 Mln Weight 0.2 Algorithm B l_b 200k n_b 800k Weight 0.25
  • 21. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Evaluation-Score Ensemble Past Interactions Ens CF Past Impressions UBCF 
 IntInt UBCF IntImp UBCF ImpImp UBCF ImpInt IBCF 
 IntInt IBCF ImpImp CBJUIS CBIS Baseline Ens 
 CF+CB Ens CB Final Ensemble
  • 22. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Conclusions Competition promotes the algorithms that learn which are the best items among the ones recommended by the Xing platform
  • 23. Politecnico di Milano Team Pumpkin-Pie09-15-2016 Conclusions Multi-Stack Ensemble 4th Place Team Pumpkin-Pie