Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Sztuczna inteligencja w prawie.

1,114 views

Published on

Slajdy z prezentacji dr Michała Araszkiewicza i dr Tomasza Żurka przedstawionej na seminarium: Technologie informatyczne w usługach prawnych – szanse i ryzyka.
Warszawa -11.05.2017

Published in: Law

Sztuczna inteligencja w prawie.

  1. 1. Your Name Your Title Your Organization (Line #1) Your Organization (Line #2)2005-12-31 Sztuczna inteligencja w prawie Michał ARASZKIEWICZ Uniwersytet Jagielloński Kraków, Poland Tomasz ZUREK Uniwersytet Marii Curie- Skłodowskiej Lublin, Poland Technologie informatyczne w usługach prawnych – szanse i ryzyka
  2. 2. 2 Kilka słów o autorach Od kilku lat pracujemy wspólnie nad modelowaniem rozumowań prawniczych przy wykorzystaniu narzędzi AI (sztucznej inteligencji) Michał Araszkiewicz – dr nauk prawnych (UJ), radca prawny, członek Komitetu Wykonawczego International Association for Artificial Intelligence and Law Tomasz Żurek - dr nauk technicznych (UMCS), inż. informatyk, członek International Association for Artificial Intelligence and Law
  3. 3. Cele tej prezentacji Przedstawienie panoramy zagadnień dotyczących stosowania metod sztucznej inteligencji celem wsparcia pracy prawników. Perspektywa „z lotu ptaka” – nie omawiamy szczegółowo formalnych modeli ani funkcjonalności poszczególnych programów komputerowych. Prezentujemy historię badań z zakresu AI and Law oraz ich stan aktualny, w tym otwarte problemy.
  4. 4. Co właściwie robią prawnicy? Na użytek tej prezentacji – adwokaci/radcowie prawni (nie sędziowie, notariusze etc.) Ochrona prawna interesów klienta! Czynności merytoryczne • Ustalanie stanu faktycznego (w tym analiza dokumentów) • Doradzanie • Opiniowanie • Tworzenie dokumentów (umowy, oświadczenia, uchwały…) • Negocjacje • Reprezentacja procesowa Czynności pozamerytoryczne • Zarządzanie (sprawami, kalendarzem, personelem) • Finanse • Business development
  5. 5. Czynności merytoryczne Cztery zasadnicze zadania: 1. Wyszukiwanie informacji (w tym odkrywanie nowych informacji) 2. Klasyfikacja informacji 3. Ocena stopnia istotności sklasyfikowanej informacji 4. Wyprowadzenie wniosków co do decyzji - na podstawie (1-3)
  6. 6. Czynniki złożoności ● Obszerność materiałów ● Częste zmiany ● Wady materiałów (wieloznaczność, redundancja, błędy syntaktyczne, błędy merytoryczne) ● Dostępność materiałów ● Konieczność posługiwania się wiedzą pozatekstową (specjalistyczną, zdroworozsądkową) ● Podejmowanie decyzji w warunkach niepewności ● Np. przewidywanie działań innych podmiotów: organów, przeciwnika procesowego ● Dyskrecjonalność organów ● Rola ocen i wartościowań ● Interes Klienta a jego preferencje
  7. 7. Typy błędów 1. Przyjęcie twierdzenia, że X, chociaż nie-X. 2. Nie przyjęcie twierdzenia, że X, chociaż X. Szczególny przypadek: przyjęcie twierdzenia, że nie-X, chociaż X. Mają one miejsce na wszystkich szczeblach rozumowań. Wyszukiwanie: wyszukanie ustawy X jako obowiązującej, chociaż ona (już, jeszcze) nie obowiązuje. Klasyfikacja: nie sklasyfikowanie orzeczenia O jako stosowalnego w sprawie S, chociaż jest ono stosowalne. Ocena stopnia istotności: przyjęcie, że argument A jest nieistotny w sprawie S, podczas gdy jest on rozstrzygający. Podjęcie decyzji: pominięcie decyzji D, chociaż ona najlepiej chroni interes Klienta.
  8. 8. Pojęcie Artificial Intelligence – sztucznej inteligencji Notoryjnie kontrowersyjne. Ostatnio często pisze się o super-inteligencji. Dla poniższych rozważań: wszelkie programy komputerowe, które są w stanie wyprowadzać wnioski z przedstawionych im danych wykazujące przynajmniej jedną z poniższych cech:. • Możność uczenia się • Autonomia decyzyjna • Możność przedstawienia uzasadnienia dla przeprowadzonego rozumowania • Intencjonalne odnoszenie się do rzeczywistości • Przetwarzanie języka naturalnego
  9. 9. AI and Law 1. Obliczeniowa teoria rozumowań prawniczych – symulowanie rozumowań prawniczych w programach komputerowych. 2. Rozwiązywanie zadań prawniczych przez AI – tworzenie systemów generujących odpowiedni output, ale nie symulujących rozumowań prawniczych. 3. Prawo jako materiał ilustracyjny – testowanie narzędzi ogólnego AI na materiałach prawnych i prawniczych (np. systemów przetwarzania języka naturalnego). 4. Nowoczesna informatyka prawnicza – wsparcie działań nie związanych bezpośrednio z pracą merytoryczną prawników (głównie wyszukiwanie i klasyfikacja informacji).
  10. 10. 10 Historia Systemy ekspertowe we wspomaganiu ekspertyz prawniczych:  Początki w latach 70-tych XX-go wieku (L. Thorne McCarty: TAXMAN)  Rozwój lat 80-tych (H. Yoshino: LES, M. Sergot i inni: “British Nationality Act as logic program” i inne)  Krytyka z końca lat 80tych i początku 90tych: bardzo wąski zakres zastosowań, nierealistyczny obraz wiedzy I wnioskowań prawniczych.  Systemy Case-based Reasoning z przełomu lat 80tych i 90tych (K. Ashley: HYPO, K. Ashley, V. Aleven: CATO)  Rewizja podejścia do modelowania wnioskowań prawniczych: modelowanie argumentacji, modele reprezentacji wiedzy prawniczej  Systemy data retrieval i NLP: wyszukiwanie referencji, klasyfikacja dokumentów, itp.)
  11. 11. 11 Obszary badawcze (przykłady) ● Modelowanie wnioskowań prawniczych i argumentacji (modele deskryptywne i normatywne) ● Modelowanie aktów prawnych ● Wnioskowanie dowodowe i probabilistyka ● Systemy dialogowe i negocjacyjne ● Modelowanie działań autonomicznych agentów w regulowanym środowisku ● Argumentation mining ● Analiza i wyszukiwanie precedensów ● Wyszukiwanie odwołań i relacji między aktami prawnymi ● Wykrywanie nadużyć
  12. 12. 12 Potencjalne kierunki rozwoju: szanse i pułapki Systemy oparte na wiedzy vs Machine Learning Problemy systemów opartych na wiedzy:  Zawodne mechanizmy wnioskowania  Argumentacja  Wiedza zdroworozsądkowa. Gwałtowny rozwój technik opartych na machine learning i NLP (IBM Debater, LUIMA)  Problem źródła  Problem wiarygodności  Problem uzasadnień  Problem ogólności
  13. 13. 13 Potencjalne kierunki rozwoju: szanse i pułapki Autonomiczny agent w środowisku prawnym (autonomiczne samochody, autonomiczne elementy Internet of Things)  Niedeterministyczne środowisko pracy  Trudności w nauczeniu się właściwych zachowań w ekstremalnych sytuacjach  Czy i kiedy można łamać prawo?
  14. 14. 14 Potencjalne kierunki rozwoju: szanse i pułapki Inteligentne wyszukiwanie ● Argumentation mining ● Bazy orzeczeń ● Pomoc w argumentacji Trudności ● NLP ● Wyszukiwanie na wielu poziomach ogólności
  15. 15. 15 Potencjalne kierunki rozwoju: szanse i pułapki Umowy i inne dokumenty merytoryczne ● Smart contracts ● Automatyczne generowanie projektów umów, oświadczeń, instrukcji, uchwał, polityk… ● Automatyczne generowanie projektów pism procesowych Trudności ● Wykrywanie sprzeczności w dokumentach ● Uzasadnienia
  16. 16. 16 Przyszłość Integracja systemów NLP i Machine Learning z formalnymi modelami argumentacji i wnioskowania Argumentation Mining – zwykle proste rozróżnienie na argumenty „za” i „przeciw” W prawie mamy do czynienia z różnymi i wyrafinowanymi mechanizmami rozumowań, interpretacji, ataków, podważeń itp. Skuteczna analiza orzeczeń i dokumentów wymaga rozpoznania tych wszystkich elementów argumentacji.
  17. 17. Sztuczna inteligencja a praktyka prawnicza ● „Zatrudnianie” robotów w kancelariach prawnych jako chwytliwe hasło. ● Poszukiwanie przewagi konkurencyjnej. ● Wyszukiwanie argumentów – lepsza konstrukcja pism przedprocesowych i procesowych. ● Wyszukiwanie sprzeczności i innych niespójności w materiałach przeciwnika. ● Semi-automatyzacja tworzenia niektórych pism ● zła wiadomość dla asystentów prawnych. ● Linkowanie posiadanych danych (w taki sposób, do jakiego nie mają dostępu inne kancelarie). ● Ocena wielkoskalowych trendów, np. w orzecznictwie. Wizualizacje.
  18. 18. 19 Czasopisma i konferencje Czasopisma ● Artificial Intelliegnce and Law ● Artificial Intelligence ● International Journal of Approximate Reasoning ● Expert Systems with Applications ● … Konferencje ● International Conference of Artificial Intelligence and Law ● JURIX ● COMMA ● ...
  19. 19. Your Name Your Title Your Organization (Line #1) Your Organization (Line #2) 20 Dziękujemy zurek@kft.umcs.lublin.pl michal.araszkiewicz@uj.edu.pl Technologie informatyczne w usługach prawnych – szanse i ryzyka

×