Just for you: FREE 60-day trial to the world’s largest digital library.
The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Activate your 30 day free trial to unlock unlimited reading.
1
Share
Activate your 30 day free trial to continue reading.
1
Share
Download to read offline
When performing classification tasks such as Activity Recognition in the smart home environment, we are presented with many interesting challenges for Machine Learning: noisy data; missing packets; limited training data; and differing training and deployment settings. We first propose a Bayesian approach to Dictionary Learning (DL), which is shown to be robust to missing data and able to automatically learn the noise level in the data. The coefficients from DL are then used in a classification setting.
Here we take the Bayes Point Machine, a Bayesian classifier, and extend it for use in a Transfer Learning setting, and show how a combination of Active Learning and Transfer Learning are able to efficiently adapt to the deployment context with only a handful of labelled examples.
When performing classification tasks such as Activity Recognition in the smart home environment, we are presented with many interesting challenges for Machine Learning: noisy data; missing packets; limited training data; and differing training and deployment settings. We first propose a Bayesian approach to Dictionary Learning (DL), which is shown to be robust to missing data and able to automatically learn the noise level in the data. The coefficients from DL are then used in a classification setting.
Here we take the Bayes Point Machine, a Bayesian classifier, and extend it for use in a Transfer Learning setting, and show how a combination of Active Learning and Transfer Learning are able to efficiently adapt to the deployment context with only a handful of labelled examples.
Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.