SlideShare a Scribd company logo
1 of 48
Download to read offline
Analysis and Evaluation of
Accident Tolerant Fuel (ATF)
Concepts for
Water Cooled Reactors (WCR)
Thomas VATTAPPILLIL
MSc Thesis Defense (EMINE)
INP Grenoble, Sept 2015
1
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
Overview
 Introduction
 Internship at IAEA
 Accident Tolerant Fuels (ATF)
 Method
 Technology Assessment
 Analysis of Current Fuel System
 ATF Requirements
 Evaluation process of current ATF Concepts
 Results
 Discussion
2
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
International Atomic Energy Agency3
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
4
International Atomic Energy Agency
 2 Internships at NPTDS
 1st: February to September 2013
 Development and implementation of Advanced Reactor
Information System (ARIS): https://aris.iaea.org/
 Organization and development of Consultancy Meeting for
R&D response to Fukushima Daiichi accident
 Educational rector simulator software
 Technology assessment for Newcomer Countries
 2nd: April to October 2015
 Design, drafting and publication of WCR booklet
 Simulator: DBA and BDBA evaluation
 Technology Assessment for Accident Tolerant Fuel
5
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
International Atomic Energy Agency
 2 Internships at NPTDS
 1st: February to September 2013
6
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
https://aris.iaea.org/
International Atomic Energy Agency
 2 Internships at NPTDS
 2nd: April to October 2015
7
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
Introduction: Accident Tolerant Fuel
 Direct response to Fukushima Daiichi accident
 Clear weaknesses in today’s fuel designs
 IAEA Lesson learned from Fukushima Daiichi Accident
 IAEA International Experts Meeting 8 (March 2015)
 US – DoE & US – NRC
 Part of constant fuel improvement effort to increase
safety of reactors
 Stakeholders
 Regulatory authorities (US – DoE, CEA,…)
 National laboratories and Universities (INL, MIT,…)
 Reactor technology vendors (Westinghouse, AREVA,…)
 Fuel designers organization (TVEL, GE,…)
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
8
Introduction: Accident Tolerant Fuel
 IAEA Activates on ATF
 IAEA Technical Working Group (TWG) on
Fuel Performance and Technology
 IAEA Technical Meeting (TM) on
ATF Concepts for LWR
 Participation in OECD – NEA ATF activities
 Coordinated Research Project (CRP): Analysis of Options
and Experimental Examination of ATF for WRC
 Thomas VATTAPPILLIL: Accident Tolerant Fuel for LWR
Report
9
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
Introduction: Accident Tolerant Fuel
 Term “Accident Tolerant” ambiguous
 No clear definition of ATF
“Fuels with enhanced accident tolerant are those that, in
comparison with the standard U02 - Zr system, can tolerate loss of
active cooling in the core for a considerable longer time period
while maintaining or improving the fuel performance
during normal operation.”
[Shannon Bragg - Sitton. Journal of Nuclear Materials, 2014]
 Basic Research
 Very large number of potential concepts for LWR
 Number of different approaches
 ATF not “silver bullet” to Nuclear Safety problems
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
10
Method: Overview
 Prerequisites for Technology Assessment
 ATF requirements
 ATF concept candidates
 Criteria for evaluation
 Technology Assessment
 Elimination of non – compatible candidates
 Evaluation
 ATF requirement
 Basic nuclear safety requirements
 Operational requirements
 Choice of best candidates
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
11
Prerequisites for Technology Assessment
 Current fuel system
 Light Water Reactors
 85% of reactors are LWR
 Most prevalent ones: PWR and BWR
 Currently used: UO2 – Zr system
 MOX – Fuel
 Much work done for Evolutionary Designs (GenIV)
 Target of analysis PWRs and BWRs
 Evaluation of requirements
 Nuclear Accidents
 Three Mile Island 2 (PWR - USA 1978, INES Lvl 5)
 Chernobyl (PWR VVER – UdSSR 1986, INES Lvl 7)
 Not considered due to unique design
 Fukushima Daiichi (BWR – Japan 2011, INES Lvl 7)
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
12
Prerequisites for Technology Assessment
 Nuclear Accidents
 Three Mile Island 2 (Gen II PWR - USA 1978, INES Lvl 5)
 Key facts
 Equipment failure & Operator error
 Human machine interface error
 LOCA
 Fuel failure after 2,5 hours
 Peak Cladding Temperature ~ 2800°C
 Partial core melt and relocation to lower plenum
 Containment intact and Lower level of radioactive release
 Response
 Automatic shutdown systems
 Birth of nuclear safety culture
 Formation of INPO and NEI
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
13
Prerequisites for Technology Assessment
 Nuclear Accidents
 Fukushima Daiichi (Gen II BWR – Japan 2011, INES Lvl 7)
 6 BWR, units 3 suffered core meltdown (partial)
 Key facts
 9.7 magnitude earthquake and BDB Tsunami
 Extend station blackout conditions (Ex. SBO)
 Failure of ECCS
 Lack of long-term core cooling mechanism
 Lack of adequate emergency preparedness
 Fuel failure to various extends and times
 Peak Cladding Temperature >2800°C
 Excessive Hydrogen generation
 Containment breach and significant radioactive release via
multiple pathways
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
14
Prerequisites for Technology Assessment
 Nuclear Accidents
 Fukushima Daiichi (Gen II BWR – Japan 2011, INES Lvl 7)
 6 BWR, units 3 suffered core meltdown (partial)
 Reaction to accident
 Phase-out of nuclear energy (Germany & Switzerland)
 Enhanced emergency preparedness and response
 Regional emergency centers
 Offsite equipment
 Enhanced severe accident training
 Severe accident management systems (SAMS)
 Filtered venting system
 Hydrogen recombines
 Accident tolerant fuel development
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
15
Prerequisites for Technology Assessment
 Main problems
 UO2 – Fuel
 Low thermal conductivity
 Lower specific heat capacities
 Melting points (higher if possible)
 Low fission product retention
 Zr – Fuel Cladding
 Large rate of oxidation reaction
 Large heat release via oxidation (“run-away” effect)
 UO2 – Zr system
 Large fuel cladding chemical interaction (FCCI)
 Large fuel cladding mechanical interaction (FCMI)
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
16
Prerequisites for Technology Assessment
 Summary of requirements for ATFs (concept specific):
 Compatibility with LWR operating environments
 High economical performance (burnups, longer cycle lengths,..)
 Dose rates < UO2 – Zr (fabrication, transport, handling, storage,…)
 Specific demands
 Fuel
 Higher thermal conductivity and lower specific heat capacities
 Increased Fission product retention
 Decreased operating temperatures (FCCI and FCMI)
 Cladding
 Lower rates of oxidation and heat release
 Improved thermomechanical properties to reduce fuel failures
(melting points, thermal conductivity, heat capacity, H
pickup,…)
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
17
Technology Assessment I
 1st attempt failed
 Wildcard search for ATF concepts
 Too many concepts
 Large amount of R&D
 Different Technology Readyness Levels (TRL)
 No comparison possibilities btw ATFs
 2nd attempt:
 Systematic Approach
 Classification ATF concepts into groups
 Elimination
1. Compatibility into LWR environment
2. Basic thermomechanical properties
3. Choice of best candidates
 Evaluation of research and implementation potential (no time)
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
18
Technology Assessment I
 Classification attempt
 Factor: change to current UO2 – Zr system
 1st attempt noticed 3 approach in ATF development
 Approach 0: UO2 + Zr system
 Approach 1: UO2 fuel + Zr clad + Coating
 Near - term technology
 Approach 2: UO2 fuel + New clad
 Mid – term technology
 Approach 3: New fuel + New clad
 Long – term technology
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
19
Technology Assessment I
 First set of realization
 Evaluation of ATF concept: Cost vs Risks
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
20
Fuel Cycle
R&D
Feasibility Deployment
Development
Time
Performance
Approach 0 NA NA NA NA High
Approach 0
(w. SAMS)
NA NA NA NA Medium
Approach 1 Low Low Low Low Medium
Approach 2 Medium Medium Low Medium Medium
Approach 3 High High High High Low
Technology Assessment I
 First set of Results
 Evaluation: Cost vs Risk
 General cost for development of new fuel concept
 Source: INL Advanced Fuel Cycle Campaign Working Group
 Experts suggest 20 – 25 yrs for full fuel concept commercialization
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
21
Technology Assessment I
 First set of realization
 Evaluation of ATF concept: Cost/Effort vs Risks
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
22
Fuel Cycle
R&D
Feasibility Deployment
Development
Time
Performance
Approach 0 NA NA NA NA High
Approach 0
(w. SAMS)
NA NA NA NA Medium
Approach 1 Low Low Low Low Medium
Approach 2 Medium Medium Low Medium Medium
Approach 3 High High High High Low
Technology Assessment I
 First set of conclusion
 Consideration of development timeline
 Current LWR predicted to operate for next 40 – 60 years
 Highest Cost vs Risk benefits
 Approach 1: Coatings
 Near-term deployable (~5 years to commercialization)
 Low cost due to minor change to fuel cycle
 Fabrication, development, safety testing, transport, etc…
 Low implementation of ATF requirements
 Approach 3: New Fuel + Cladding
 High cost due to largest change from current fuel cycle
 Long development and testing time (~ 20 – 25 years)
 New fabrication and test facilities
 Large fuel cycle refurbishment/development costs
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
23
Technology Assessment I
 First set of conclusion
 Approach 2: Cladding
 Mid-range development time (~ 5 -15 years)
 No or little experience within nuclear industry
 Low compatibility with UO2 base fuel
 Enrichment issues
 Important ATF requirements not fulfilled
 Assuming post-Fukushima requirements implemented
 No real enhancement to Approach 1: coating
 No improvements in economics
 Lower economical performance expected
 Approach 2: Possible cladding for new fuel systems
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
24
Technology Assessment I
 First set of conclusion
 Focus of research of stakeholders
 Regulatory authorities & National Labs
 Approach I, 2 & 3
 Large resources and capabilities
 Long and short solutions needs
 Technology vendors
 Approach 1 & 3
 Large resources
 Long and short solutions needs
 Universities
 Approach 1 & 2
 Limited recourse
 Often computation or simulation analysis
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
25
Technology Assessment II
 Step 2: Closer evaluation of ATF concepts
 Defining simple criteria for evaluation
 Valid as ATF are still development phase
 Irradiation, In-pile and large-scale test limited
 Criteria based on
 Enhanced Accident tolerance requirements
 Data from nuclear accidents
 Fuel Safety Criteria
 Enhancing economical performance
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
26
Technology Assessment II
 Step 2: Closer evaluation of ATF concepts
 Defining & Simple criteria for evaluation
 Approach 1
 Lower oxidation characteristics
 Protection of Zr - alloys cladding
 Approach 2
 Lower oxidation that Zr – alloys
 High robustness at high temperatures
 Approach 3
 All of above
 Superior thermal properties (conductivity, melting point,…)
 Better economical performance (burnup, cycle lengths,…)
 Fission product retention for BDBA
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
27
Technology Assessment II
 Approach 1: Coatings
 ATF Requirements
 Lower heat release of oxidation
 Lower hydrogen generation
 Large melting points
 Economical factors
 Compatibility with Zr and H20
 Fabrication and Material
 Candidates
 Precious experience
 Chromia (CrO3)
Alumina (Al2O3)
Silica (SiO2)
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
28
Technology Assessment II
 Approach 1: Coatings
 Lower oxidation characteristics
 Protection of Zr - alloys cladding
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
29
Technology Assessment II
 Approach 1: Coatings
 Lower oxidation characteristics
 Protection of Zr - alloys cladding
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
30
Technology Assessment II
 Approach 1: Coatings
 Most promising: Optimized Chromium Coating
 Currently developed by CEA
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
31
Technology Assessment II
 Approach 1: Coatings
 Most promising: Optimized Chromium Coating
 Currently developed by CEA
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
32
Technology Assessment II
 Approach 1: Coatings
 Most promising: Optimized Chromium Coating
 Currently developed by CEA
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
33
Technology Assessment II
 Approach 2: Cladding
 ATF Requirements
 Lower oxidation that Zr – alloys
 High robustness at high temperatures
 Lower PCCI and PCMI
 Regulators Criteria
 Max cladding temperature: 1204 °C
 Localized oxidation: max < 17 %
 Max H2 production: < 1 % all cladding reaction
 Mech. behavior post-quench: > 1 %
 Economical
 Low parasitic thermal neutron absorption
 Fabrication and availability
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
34
Technology Assessment II
 Approach 2: Cladding
 Approach 1: Cr, Al or Si are good for oxidation
 Neutronic penalties exclude: Cr
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
35
Figure 19 show HT robustness of clad materials
Technology Assessment II
 Approach 2: Cladding
 Approach 1: Cr, Al or Si are good for oxidation
 Neutronic penalties exclude: Cr
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
36
Technology Assessment II
 Approach 2: Cladding
 Approach 1: Cr, Al or Si are good for oxidation
 Neutronic penalties exclude: Cr
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
37
Technology Assessment II
 Approach 2: Cladding
 SiC disadvantages
 High parasitic thermal neutronic absorption
 Fabrication process problems: end-seals
 More useful with other base fuels
 Mo disadvantages
 Superior to Zr in thermomechanical aspects
 Bad corrosion in high temperatures environments
 High parasitic thermal neutronic absorption
 FeCrAL
 Clear winner
 Moderate parasitic thermal neutronic absorption
 Better suited with other base fuel
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
38
Technology Assessment II
 Approach 3: New Fuel + New Cladding
 Part 1: ATF Requirements for Fuel
 Improved thermomechanical properties
 Higher thermal conductivity
 Lower heat Capacity
 Lower PCMI and PCCI
 Fission product retention
 Fuel cycle economics
 Heavy metal density
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
39
Technology Assessment II
 Approach 3: New Fuel + New Cladding
 Part 1: ATF Requirements for Fuel
 Improved thermomechanical properties
 Higher thermal conductivity
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
40
Technology Assessment II
 Approach 3: New Fuel + New Cladding
 Part 1: ATF Requirements for Fuel
 Improved thermomechanical properties
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
41
UO2 UN U - Mo U3Si2 FCM – UN
Thermal
conductivity
(W/mK)
4 20 37 20 19
Heat capacity
(J/kgK at
500°C)
300 230 145 230 230
Heavy metal
density
(g/cm3)
9.6 13.5 16.9 11.3 9.6
Melting Point
(°C)
2840 2762 1150 2762 2762
Technology Assessment II
 Approach 3: New Fuel + New Cladding
 Part 1: ATF Requirements for Fuel
 UN: has heavy neutronic penalties (overcome N15)
 USi – Why U3Si2 and U3Si5
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
42
Technology Assessment II
 Approach 3: New Fuel + New Cladding
 Part 2: ATF Requirements for Fuel
 Fission production capabilities
 Fuel matrix of candidate high fissile density ceramic systems
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
43
Technology Assessment II
 Approach 3: New Fuel + New Cladding
 Part 2: ATF Requirements for Fuel
 Fission production capabilities
 Fuel matrix of candidate high fissile density ceramic systems
 Investigation have shown
 UN – U3Si5 –UB2 most promising ATF capabilities
 UN (50%) - U3Si5 (40%) – Kanthal AF
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
44
Technology Assessment II
 Approach 3: New Fuel + New Cladding
 Investigation have shown
 UN – U3Si5 – UB2 most promising ATF capabilities
 UN (50%) - U3Si5 (40%) – Kanthal AF (FeCrAl)
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
45
Conclusions
 Approach 1: Coating – Short-term solution
 Most promising: Improved Cr coating
 Approach 2
 Only continue research for nuclear application as part of
Approach 3
 Approach 3: New Fuel System – Long-term solution
 Most promising
 UN – U3Si5 – UB2 : ATF capabilities
 UN (50%) - U3Si5 (40%) – Kanthal AF (FeCrAl) : most similar to
UO2 – Zr
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
46
Discussion of Results
 Only very overarching view of ATF
 PWR and BWR accident environments same
 Acceptable at this part
 Later more detailed studies need distinguishing
 Different motivation in ATF for Stakeholders
 Regulatory bodies: maximize safety
 Utilities and fuel vendors: maximize economics
 Universities: maximize funding
 National laboratories: maximize funding
 Concrete results: further LWR environment testing
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
47
Thank you for you
attention!
Questions please!
Thomas VATTAPPILLIL (tvattappillil@gmail.com)
3/09/2015
INP Grenoble, MSc Defense
9/2/2015T. VATTAPPILLIL MSc Thesis Defense
48

More Related Content

Viewers also liked

The Economist Covers - The Financial Crisis Evolution
The Economist Covers - The Financial Crisis EvolutionThe Economist Covers - The Financial Crisis Evolution
The Economist Covers - The Financial Crisis EvolutionRoberto Rodrigues
 
New Materials of sustainable design
New Materials of sustainable designNew Materials of sustainable design
New Materials of sustainable designFranco Papeschi
 
البناء الاخضر ومجابهة المخاطر بسم الله الرحمن الرحيم
البناء الاخضر ومجابهة المخاطر   بسم الله الرحمن الرحيمالبناء الاخضر ومجابهة المخاطر   بسم الله الرحمن الرحيم
البناء الاخضر ومجابهة المخاطر بسم الله الرحمن الرحيمHebatalrahman Ahmed
 
Timber- Building material
Timber- Building materialTimber- Building material
Timber- Building materialGrace Henry
 
2. timber as a sustainable building material
2. timber as a sustainable building material2. timber as a sustainable building material
2. timber as a sustainable building materialjbusse
 
Sustainable building materials
Sustainable building materialsSustainable building materials
Sustainable building materialsTEJAL PATEL
 
Parametric Architecture – Botanical Treeson Cad
Parametric Architecture – Botanical Treeson CadParametric Architecture – Botanical Treeson Cad
Parametric Architecture – Botanical Treeson Cadschsy02
 
Green Building Case Study on TERI,bangalore.
Green Building Case Study on TERI,bangalore.Green Building Case Study on TERI,bangalore.
Green Building Case Study on TERI,bangalore.Vinay M
 

Viewers also liked (11)

Thesis defense
Thesis defenseThesis defense
Thesis defense
 
The Economist Covers - The Financial Crisis Evolution
The Economist Covers - The Financial Crisis EvolutionThe Economist Covers - The Financial Crisis Evolution
The Economist Covers - The Financial Crisis Evolution
 
New Materials of sustainable design
New Materials of sustainable designNew Materials of sustainable design
New Materials of sustainable design
 
البناء الاخضر ومجابهة المخاطر بسم الله الرحمن الرحيم
البناء الاخضر ومجابهة المخاطر   بسم الله الرحمن الرحيمالبناء الاخضر ومجابهة المخاطر   بسم الله الرحمن الرحيم
البناء الاخضر ومجابهة المخاطر بسم الله الرحمن الرحيم
 
Timber- Building material
Timber- Building materialTimber- Building material
Timber- Building material
 
2. timber as a sustainable building material
2. timber as a sustainable building material2. timber as a sustainable building material
2. timber as a sustainable building material
 
Sustainable building materials
Sustainable building materialsSustainable building materials
Sustainable building materials
 
Parametric Architecture – Botanical Treeson Cad
Parametric Architecture – Botanical Treeson CadParametric Architecture – Botanical Treeson Cad
Parametric Architecture – Botanical Treeson Cad
 
Defects in timber
Defects in timber Defects in timber
Defects in timber
 
Green Building Case Study on TERI,bangalore.
Green Building Case Study on TERI,bangalore.Green Building Case Study on TERI,bangalore.
Green Building Case Study on TERI,bangalore.
 
Zaha Hadid's Architecture of Form
Zaha Hadid's Architecture of FormZaha Hadid's Architecture of Form
Zaha Hadid's Architecture of Form
 

Similar to ThomasVATTAPPILLIL_MScThesisPres_Sep2015_INPGrenoble

C1_HTGR_design_safety_JCK
C1_HTGR_design_safety_JCKC1_HTGR_design_safety_JCK
C1_HTGR_design_safety_JCKJim Kuijper
 
Guest speaker presentation at 'Seminar Offshore Wind Energy' UGent – June 201...
Guest speaker presentation at 'Seminar Offshore Wind Energy' UGent – June 201...Guest speaker presentation at 'Seminar Offshore Wind Energy' UGent – June 201...
Guest speaker presentation at 'Seminar Offshore Wind Energy' UGent – June 201...Pieter Jan Jordaens
 
Stork_Technical_Challenges.ppt
Stork_Technical_Challenges.pptStork_Technical_Challenges.ppt
Stork_Technical_Challenges.pptwixapps
 
2014 sandia blade workshop wind turbine reliability-iet-cas's perspective
2014 sandia blade workshop wind turbine reliability-iet-cas's perspective2014 sandia blade workshop wind turbine reliability-iet-cas's perspective
2014 sandia blade workshop wind turbine reliability-iet-cas's perspectiveXiao CHEN
 
SUOKAS Kuwait s-2015 slides_FINAL
SUOKAS Kuwait s-2015 slides_FINALSUOKAS Kuwait s-2015 slides_FINAL
SUOKAS Kuwait s-2015 slides_FINALJouko Suokas
 
Lessons Learned in ICFMP Project for Verification and Validation of Computer ...
Lessons Learned in ICFMP Project for Verification and Validation of Computer ...Lessons Learned in ICFMP Project for Verification and Validation of Computer ...
Lessons Learned in ICFMP Project for Verification and Validation of Computer ...Dr. Monideep Dey
 
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Versli Lietuva (Enterprise Lithuania)
 
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Denis Senin
 
IRJET- Characteristic and Failure Analysis of Frp Composite Tank used for Sod...
IRJET- Characteristic and Failure Analysis of Frp Composite Tank used for Sod...IRJET- Characteristic and Failure Analysis of Frp Composite Tank used for Sod...
IRJET- Characteristic and Failure Analysis of Frp Composite Tank used for Sod...IRJET Journal
 
День атомної енергетики 2014. Стратегія управління важкими аваріями «Внутрішн...
День атомної енергетики 2014. Стратегія управління важкими аваріями «Внутрішн...День атомної енергетики 2014. Стратегія управління важкими аваріями «Внутрішн...
День атомної енергетики 2014. Стратегія управління важкими аваріями «Внутрішн...НАЕК «Енергоатом»
 
FuelCellEurope RCS Workshop
FuelCellEurope RCS WorkshopFuelCellEurope RCS Workshop
FuelCellEurope RCS Workshopdivacreative
 
IAEA, Small and Medium Size Reactors 2009, Kuznetsov
IAEA, Small and Medium Size Reactors 2009, KuznetsovIAEA, Small and Medium Size Reactors 2009, Kuznetsov
IAEA, Small and Medium Size Reactors 2009, Kuznetsovmyatom
 
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...Versli Lietuva (Enterprise Lithuania)
 
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...Denis Senin
 
Tudor Dragea ICONE 23 Final Paper
Tudor Dragea ICONE 23 Final Paper Tudor Dragea ICONE 23 Final Paper
Tudor Dragea ICONE 23 Final Paper Tudor Dragea
 
OPTIMIZING BATTERY END-OF-LIFE BY STATIONARY APPLICATIONS AND RECYCLING
OPTIMIZING BATTERY END-OF-LIFE BY STATIONARY APPLICATIONS AND RECYCLINGOPTIMIZING BATTERY END-OF-LIFE BY STATIONARY APPLICATIONS AND RECYCLING
OPTIMIZING BATTERY END-OF-LIFE BY STATIONARY APPLICATIONS AND RECYCLINGiQHub
 
Citon's involvement in the development and implementation of SMR in Romania ai
Citon's involvement in the development and implementation of SMR in Romania aiCiton's involvement in the development and implementation of SMR in Romania ai
Citon's involvement in the development and implementation of SMR in Romania aiIulianNita4
 
Preliminary hazards identification of the ship hybrid power system esrel2017
Preliminary hazards identification of the ship hybrid power system   esrel2017Preliminary hazards identification of the ship hybrid power system   esrel2017
Preliminary hazards identification of the ship hybrid power system esrel2017Tito Livio M. Cardoso
 

Similar to ThomasVATTAPPILLIL_MScThesisPres_Sep2015_INPGrenoble (20)

C1_HTGR_design_safety_JCK
C1_HTGR_design_safety_JCKC1_HTGR_design_safety_JCK
C1_HTGR_design_safety_JCK
 
771139-DSAT-EN-107377
771139-DSAT-EN-107377771139-DSAT-EN-107377
771139-DSAT-EN-107377
 
Guest speaker presentation at 'Seminar Offshore Wind Energy' UGent – June 201...
Guest speaker presentation at 'Seminar Offshore Wind Energy' UGent – June 201...Guest speaker presentation at 'Seminar Offshore Wind Energy' UGent – June 201...
Guest speaker presentation at 'Seminar Offshore Wind Energy' UGent – June 201...
 
Stork_Technical_Challenges.ppt
Stork_Technical_Challenges.pptStork_Technical_Challenges.ppt
Stork_Technical_Challenges.ppt
 
2014 sandia blade workshop wind turbine reliability-iet-cas's perspective
2014 sandia blade workshop wind turbine reliability-iet-cas's perspective2014 sandia blade workshop wind turbine reliability-iet-cas's perspective
2014 sandia blade workshop wind turbine reliability-iet-cas's perspective
 
SUOKAS Kuwait s-2015 slides_FINAL
SUOKAS Kuwait s-2015 slides_FINALSUOKAS Kuwait s-2015 slides_FINAL
SUOKAS Kuwait s-2015 slides_FINAL
 
Lessons Learned in ICFMP Project for Verification and Validation of Computer ...
Lessons Learned in ICFMP Project for Verification and Validation of Computer ...Lessons Learned in ICFMP Project for Verification and Validation of Computer ...
Lessons Learned in ICFMP Project for Verification and Validation of Computer ...
 
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
 
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
 
IRJET- Characteristic and Failure Analysis of Frp Composite Tank used for Sod...
IRJET- Characteristic and Failure Analysis of Frp Composite Tank used for Sod...IRJET- Characteristic and Failure Analysis of Frp Composite Tank used for Sod...
IRJET- Characteristic and Failure Analysis of Frp Composite Tank used for Sod...
 
День атомної енергетики 2014. Стратегія управління важкими аваріями «Внутрішн...
День атомної енергетики 2014. Стратегія управління важкими аваріями «Внутрішн...День атомної енергетики 2014. Стратегія управління важкими аваріями «Внутрішн...
День атомної енергетики 2014. Стратегія управління важкими аваріями «Внутрішн...
 
FuelCellEurope RCS Workshop
FuelCellEurope RCS WorkshopFuelCellEurope RCS Workshop
FuelCellEurope RCS Workshop
 
IAEA, Small and Medium Size Reactors 2009, Kuznetsov
IAEA, Small and Medium Size Reactors 2009, KuznetsovIAEA, Small and Medium Size Reactors 2009, Kuznetsov
IAEA, Small and Medium Size Reactors 2009, Kuznetsov
 
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...
 
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...
Mikael Kuokkkanen, Inspecta Nuclear (Švedija), „Visagino VAE projektas. Techn...
 
Tudor Dragea ICONE 23 Final Paper
Tudor Dragea ICONE 23 Final Paper Tudor Dragea ICONE 23 Final Paper
Tudor Dragea ICONE 23 Final Paper
 
OPTIMIZING BATTERY END-OF-LIFE BY STATIONARY APPLICATIONS AND RECYCLING
OPTIMIZING BATTERY END-OF-LIFE BY STATIONARY APPLICATIONS AND RECYCLINGOPTIMIZING BATTERY END-OF-LIFE BY STATIONARY APPLICATIONS AND RECYCLING
OPTIMIZING BATTERY END-OF-LIFE BY STATIONARY APPLICATIONS AND RECYCLING
 
bwr-tt102es
bwr-tt102esbwr-tt102es
bwr-tt102es
 
Citon's involvement in the development and implementation of SMR in Romania ai
Citon's involvement in the development and implementation of SMR in Romania aiCiton's involvement in the development and implementation of SMR in Romania ai
Citon's involvement in the development and implementation of SMR in Romania ai
 
Preliminary hazards identification of the ship hybrid power system esrel2017
Preliminary hazards identification of the ship hybrid power system   esrel2017Preliminary hazards identification of the ship hybrid power system   esrel2017
Preliminary hazards identification of the ship hybrid power system esrel2017
 

ThomasVATTAPPILLIL_MScThesisPres_Sep2015_INPGrenoble

  • 1. Analysis and Evaluation of Accident Tolerant Fuel (ATF) Concepts for Water Cooled Reactors (WCR) Thomas VATTAPPILLIL MSc Thesis Defense (EMINE) INP Grenoble, Sept 2015 1 9/2/2015T. VATTAPPILLIL MSc Thesis Defense
  • 2. Overview  Introduction  Internship at IAEA  Accident Tolerant Fuels (ATF)  Method  Technology Assessment  Analysis of Current Fuel System  ATF Requirements  Evaluation process of current ATF Concepts  Results  Discussion 2 9/2/2015T. VATTAPPILLIL MSc Thesis Defense
  • 3. International Atomic Energy Agency3 9/2/2015T. VATTAPPILLIL MSc Thesis Defense
  • 4. 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 4
  • 5. International Atomic Energy Agency  2 Internships at NPTDS  1st: February to September 2013  Development and implementation of Advanced Reactor Information System (ARIS): https://aris.iaea.org/  Organization and development of Consultancy Meeting for R&D response to Fukushima Daiichi accident  Educational rector simulator software  Technology assessment for Newcomer Countries  2nd: April to October 2015  Design, drafting and publication of WCR booklet  Simulator: DBA and BDBA evaluation  Technology Assessment for Accident Tolerant Fuel 5 9/2/2015T. VATTAPPILLIL MSc Thesis Defense
  • 6. International Atomic Energy Agency  2 Internships at NPTDS  1st: February to September 2013 6 9/2/2015T. VATTAPPILLIL MSc Thesis Defense https://aris.iaea.org/
  • 7. International Atomic Energy Agency  2 Internships at NPTDS  2nd: April to October 2015 7 9/2/2015T. VATTAPPILLIL MSc Thesis Defense
  • 8. Introduction: Accident Tolerant Fuel  Direct response to Fukushima Daiichi accident  Clear weaknesses in today’s fuel designs  IAEA Lesson learned from Fukushima Daiichi Accident  IAEA International Experts Meeting 8 (March 2015)  US – DoE & US – NRC  Part of constant fuel improvement effort to increase safety of reactors  Stakeholders  Regulatory authorities (US – DoE, CEA,…)  National laboratories and Universities (INL, MIT,…)  Reactor technology vendors (Westinghouse, AREVA,…)  Fuel designers organization (TVEL, GE,…) 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 8
  • 9. Introduction: Accident Tolerant Fuel  IAEA Activates on ATF  IAEA Technical Working Group (TWG) on Fuel Performance and Technology  IAEA Technical Meeting (TM) on ATF Concepts for LWR  Participation in OECD – NEA ATF activities  Coordinated Research Project (CRP): Analysis of Options and Experimental Examination of ATF for WRC  Thomas VATTAPPILLIL: Accident Tolerant Fuel for LWR Report 9 9/2/2015T. VATTAPPILLIL MSc Thesis Defense
  • 10. Introduction: Accident Tolerant Fuel  Term “Accident Tolerant” ambiguous  No clear definition of ATF “Fuels with enhanced accident tolerant are those that, in comparison with the standard U02 - Zr system, can tolerate loss of active cooling in the core for a considerable longer time period while maintaining or improving the fuel performance during normal operation.” [Shannon Bragg - Sitton. Journal of Nuclear Materials, 2014]  Basic Research  Very large number of potential concepts for LWR  Number of different approaches  ATF not “silver bullet” to Nuclear Safety problems 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 10
  • 11. Method: Overview  Prerequisites for Technology Assessment  ATF requirements  ATF concept candidates  Criteria for evaluation  Technology Assessment  Elimination of non – compatible candidates  Evaluation  ATF requirement  Basic nuclear safety requirements  Operational requirements  Choice of best candidates 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 11
  • 12. Prerequisites for Technology Assessment  Current fuel system  Light Water Reactors  85% of reactors are LWR  Most prevalent ones: PWR and BWR  Currently used: UO2 – Zr system  MOX – Fuel  Much work done for Evolutionary Designs (GenIV)  Target of analysis PWRs and BWRs  Evaluation of requirements  Nuclear Accidents  Three Mile Island 2 (PWR - USA 1978, INES Lvl 5)  Chernobyl (PWR VVER – UdSSR 1986, INES Lvl 7)  Not considered due to unique design  Fukushima Daiichi (BWR – Japan 2011, INES Lvl 7) 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 12
  • 13. Prerequisites for Technology Assessment  Nuclear Accidents  Three Mile Island 2 (Gen II PWR - USA 1978, INES Lvl 5)  Key facts  Equipment failure & Operator error  Human machine interface error  LOCA  Fuel failure after 2,5 hours  Peak Cladding Temperature ~ 2800°C  Partial core melt and relocation to lower plenum  Containment intact and Lower level of radioactive release  Response  Automatic shutdown systems  Birth of nuclear safety culture  Formation of INPO and NEI 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 13
  • 14. Prerequisites for Technology Assessment  Nuclear Accidents  Fukushima Daiichi (Gen II BWR – Japan 2011, INES Lvl 7)  6 BWR, units 3 suffered core meltdown (partial)  Key facts  9.7 magnitude earthquake and BDB Tsunami  Extend station blackout conditions (Ex. SBO)  Failure of ECCS  Lack of long-term core cooling mechanism  Lack of adequate emergency preparedness  Fuel failure to various extends and times  Peak Cladding Temperature >2800°C  Excessive Hydrogen generation  Containment breach and significant radioactive release via multiple pathways 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 14
  • 15. Prerequisites for Technology Assessment  Nuclear Accidents  Fukushima Daiichi (Gen II BWR – Japan 2011, INES Lvl 7)  6 BWR, units 3 suffered core meltdown (partial)  Reaction to accident  Phase-out of nuclear energy (Germany & Switzerland)  Enhanced emergency preparedness and response  Regional emergency centers  Offsite equipment  Enhanced severe accident training  Severe accident management systems (SAMS)  Filtered venting system  Hydrogen recombines  Accident tolerant fuel development 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 15
  • 16. Prerequisites for Technology Assessment  Main problems  UO2 – Fuel  Low thermal conductivity  Lower specific heat capacities  Melting points (higher if possible)  Low fission product retention  Zr – Fuel Cladding  Large rate of oxidation reaction  Large heat release via oxidation (“run-away” effect)  UO2 – Zr system  Large fuel cladding chemical interaction (FCCI)  Large fuel cladding mechanical interaction (FCMI) 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 16
  • 17. Prerequisites for Technology Assessment  Summary of requirements for ATFs (concept specific):  Compatibility with LWR operating environments  High economical performance (burnups, longer cycle lengths,..)  Dose rates < UO2 – Zr (fabrication, transport, handling, storage,…)  Specific demands  Fuel  Higher thermal conductivity and lower specific heat capacities  Increased Fission product retention  Decreased operating temperatures (FCCI and FCMI)  Cladding  Lower rates of oxidation and heat release  Improved thermomechanical properties to reduce fuel failures (melting points, thermal conductivity, heat capacity, H pickup,…) 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 17
  • 18. Technology Assessment I  1st attempt failed  Wildcard search for ATF concepts  Too many concepts  Large amount of R&D  Different Technology Readyness Levels (TRL)  No comparison possibilities btw ATFs  2nd attempt:  Systematic Approach  Classification ATF concepts into groups  Elimination 1. Compatibility into LWR environment 2. Basic thermomechanical properties 3. Choice of best candidates  Evaluation of research and implementation potential (no time) 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 18
  • 19. Technology Assessment I  Classification attempt  Factor: change to current UO2 – Zr system  1st attempt noticed 3 approach in ATF development  Approach 0: UO2 + Zr system  Approach 1: UO2 fuel + Zr clad + Coating  Near - term technology  Approach 2: UO2 fuel + New clad  Mid – term technology  Approach 3: New fuel + New clad  Long – term technology 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 19
  • 20. Technology Assessment I  First set of realization  Evaluation of ATF concept: Cost vs Risks 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 20 Fuel Cycle R&D Feasibility Deployment Development Time Performance Approach 0 NA NA NA NA High Approach 0 (w. SAMS) NA NA NA NA Medium Approach 1 Low Low Low Low Medium Approach 2 Medium Medium Low Medium Medium Approach 3 High High High High Low
  • 21. Technology Assessment I  First set of Results  Evaluation: Cost vs Risk  General cost for development of new fuel concept  Source: INL Advanced Fuel Cycle Campaign Working Group  Experts suggest 20 – 25 yrs for full fuel concept commercialization 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 21
  • 22. Technology Assessment I  First set of realization  Evaluation of ATF concept: Cost/Effort vs Risks 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 22 Fuel Cycle R&D Feasibility Deployment Development Time Performance Approach 0 NA NA NA NA High Approach 0 (w. SAMS) NA NA NA NA Medium Approach 1 Low Low Low Low Medium Approach 2 Medium Medium Low Medium Medium Approach 3 High High High High Low
  • 23. Technology Assessment I  First set of conclusion  Consideration of development timeline  Current LWR predicted to operate for next 40 – 60 years  Highest Cost vs Risk benefits  Approach 1: Coatings  Near-term deployable (~5 years to commercialization)  Low cost due to minor change to fuel cycle  Fabrication, development, safety testing, transport, etc…  Low implementation of ATF requirements  Approach 3: New Fuel + Cladding  High cost due to largest change from current fuel cycle  Long development and testing time (~ 20 – 25 years)  New fabrication and test facilities  Large fuel cycle refurbishment/development costs 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 23
  • 24. Technology Assessment I  First set of conclusion  Approach 2: Cladding  Mid-range development time (~ 5 -15 years)  No or little experience within nuclear industry  Low compatibility with UO2 base fuel  Enrichment issues  Important ATF requirements not fulfilled  Assuming post-Fukushima requirements implemented  No real enhancement to Approach 1: coating  No improvements in economics  Lower economical performance expected  Approach 2: Possible cladding for new fuel systems 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 24
  • 25. Technology Assessment I  First set of conclusion  Focus of research of stakeholders  Regulatory authorities & National Labs  Approach I, 2 & 3  Large resources and capabilities  Long and short solutions needs  Technology vendors  Approach 1 & 3  Large resources  Long and short solutions needs  Universities  Approach 1 & 2  Limited recourse  Often computation or simulation analysis 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 25
  • 26. Technology Assessment II  Step 2: Closer evaluation of ATF concepts  Defining simple criteria for evaluation  Valid as ATF are still development phase  Irradiation, In-pile and large-scale test limited  Criteria based on  Enhanced Accident tolerance requirements  Data from nuclear accidents  Fuel Safety Criteria  Enhancing economical performance 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 26
  • 27. Technology Assessment II  Step 2: Closer evaluation of ATF concepts  Defining & Simple criteria for evaluation  Approach 1  Lower oxidation characteristics  Protection of Zr - alloys cladding  Approach 2  Lower oxidation that Zr – alloys  High robustness at high temperatures  Approach 3  All of above  Superior thermal properties (conductivity, melting point,…)  Better economical performance (burnup, cycle lengths,…)  Fission product retention for BDBA 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 27
  • 28. Technology Assessment II  Approach 1: Coatings  ATF Requirements  Lower heat release of oxidation  Lower hydrogen generation  Large melting points  Economical factors  Compatibility with Zr and H20  Fabrication and Material  Candidates  Precious experience  Chromia (CrO3) Alumina (Al2O3) Silica (SiO2) 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 28
  • 29. Technology Assessment II  Approach 1: Coatings  Lower oxidation characteristics  Protection of Zr - alloys cladding 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 29
  • 30. Technology Assessment II  Approach 1: Coatings  Lower oxidation characteristics  Protection of Zr - alloys cladding 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 30
  • 31. Technology Assessment II  Approach 1: Coatings  Most promising: Optimized Chromium Coating  Currently developed by CEA 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 31
  • 32. Technology Assessment II  Approach 1: Coatings  Most promising: Optimized Chromium Coating  Currently developed by CEA 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 32
  • 33. Technology Assessment II  Approach 1: Coatings  Most promising: Optimized Chromium Coating  Currently developed by CEA 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 33
  • 34. Technology Assessment II  Approach 2: Cladding  ATF Requirements  Lower oxidation that Zr – alloys  High robustness at high temperatures  Lower PCCI and PCMI  Regulators Criteria  Max cladding temperature: 1204 °C  Localized oxidation: max < 17 %  Max H2 production: < 1 % all cladding reaction  Mech. behavior post-quench: > 1 %  Economical  Low parasitic thermal neutron absorption  Fabrication and availability 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 34
  • 35. Technology Assessment II  Approach 2: Cladding  Approach 1: Cr, Al or Si are good for oxidation  Neutronic penalties exclude: Cr 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 35 Figure 19 show HT robustness of clad materials
  • 36. Technology Assessment II  Approach 2: Cladding  Approach 1: Cr, Al or Si are good for oxidation  Neutronic penalties exclude: Cr 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 36
  • 37. Technology Assessment II  Approach 2: Cladding  Approach 1: Cr, Al or Si are good for oxidation  Neutronic penalties exclude: Cr 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 37
  • 38. Technology Assessment II  Approach 2: Cladding  SiC disadvantages  High parasitic thermal neutronic absorption  Fabrication process problems: end-seals  More useful with other base fuels  Mo disadvantages  Superior to Zr in thermomechanical aspects  Bad corrosion in high temperatures environments  High parasitic thermal neutronic absorption  FeCrAL  Clear winner  Moderate parasitic thermal neutronic absorption  Better suited with other base fuel 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 38
  • 39. Technology Assessment II  Approach 3: New Fuel + New Cladding  Part 1: ATF Requirements for Fuel  Improved thermomechanical properties  Higher thermal conductivity  Lower heat Capacity  Lower PCMI and PCCI  Fission product retention  Fuel cycle economics  Heavy metal density 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 39
  • 40. Technology Assessment II  Approach 3: New Fuel + New Cladding  Part 1: ATF Requirements for Fuel  Improved thermomechanical properties  Higher thermal conductivity 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 40
  • 41. Technology Assessment II  Approach 3: New Fuel + New Cladding  Part 1: ATF Requirements for Fuel  Improved thermomechanical properties 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 41 UO2 UN U - Mo U3Si2 FCM – UN Thermal conductivity (W/mK) 4 20 37 20 19 Heat capacity (J/kgK at 500°C) 300 230 145 230 230 Heavy metal density (g/cm3) 9.6 13.5 16.9 11.3 9.6 Melting Point (°C) 2840 2762 1150 2762 2762
  • 42. Technology Assessment II  Approach 3: New Fuel + New Cladding  Part 1: ATF Requirements for Fuel  UN: has heavy neutronic penalties (overcome N15)  USi – Why U3Si2 and U3Si5 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 42
  • 43. Technology Assessment II  Approach 3: New Fuel + New Cladding  Part 2: ATF Requirements for Fuel  Fission production capabilities  Fuel matrix of candidate high fissile density ceramic systems 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 43
  • 44. Technology Assessment II  Approach 3: New Fuel + New Cladding  Part 2: ATF Requirements for Fuel  Fission production capabilities  Fuel matrix of candidate high fissile density ceramic systems  Investigation have shown  UN – U3Si5 –UB2 most promising ATF capabilities  UN (50%) - U3Si5 (40%) – Kanthal AF 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 44
  • 45. Technology Assessment II  Approach 3: New Fuel + New Cladding  Investigation have shown  UN – U3Si5 – UB2 most promising ATF capabilities  UN (50%) - U3Si5 (40%) – Kanthal AF (FeCrAl) 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 45
  • 46. Conclusions  Approach 1: Coating – Short-term solution  Most promising: Improved Cr coating  Approach 2  Only continue research for nuclear application as part of Approach 3  Approach 3: New Fuel System – Long-term solution  Most promising  UN – U3Si5 – UB2 : ATF capabilities  UN (50%) - U3Si5 (40%) – Kanthal AF (FeCrAl) : most similar to UO2 – Zr 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 46
  • 47. Discussion of Results  Only very overarching view of ATF  PWR and BWR accident environments same  Acceptable at this part  Later more detailed studies need distinguishing  Different motivation in ATF for Stakeholders  Regulatory bodies: maximize safety  Utilities and fuel vendors: maximize economics  Universities: maximize funding  National laboratories: maximize funding  Concrete results: further LWR environment testing 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 47
  • 48. Thank you for you attention! Questions please! Thomas VATTAPPILLIL (tvattappillil@gmail.com) 3/09/2015 INP Grenoble, MSc Defense 9/2/2015T. VATTAPPILLIL MSc Thesis Defense 48