SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Successfully reported this slideshow.
Activate your 14 day free trial to unlock unlimited reading.
A Hybrid Approach to Disseminate Large Volume Sensor Data for Monitoring Global Change
A Hybrid Approach to Disseminate Large Volume Sensor Data for Monitoring Global Change
1.
A Hybrid Approach to Disseminate Large Volume Sensor Data for Monitoring Global Change Theodor Foerster, Albert Remke & Georg Kaspar EOGC 2011, Munich
2.
Motivation <ul><li>Global change </li></ul><ul><ul><li>Large volume of geodata </li></ul></ul><ul><ul><li>Global coverage & real-time </li></ul></ul><ul><li>Satellite-based dissemination system </li></ul><ul><ul><li>Proprietary standards </li></ul></ul><ul><li>Web-based dissemination </li></ul><ul><ul><li>Interoperability & Spatial Data Infrastructures </li></ul></ul><ul><li> Hybrid approach </li></ul>
3.
GEONETCast – satellite-based dissemination system <ul><li>Free of charge </li></ul><ul><li>180 products - different applications </li></ul><ul><li>Global products – world-wide coverage </li></ul><ul><li>Real-time </li></ul>
4.
Interoperability <ul><li>Establish common understanding on concepts </li></ul><ul><li>Web Services </li></ul><ul><ul><li>Common interfaces available through the Web </li></ul></ul><ul><ul><li>HTTP & XML </li></ul></ul><ul><li>Spatial Data Infrastructures </li></ul><ul><ul><li>Framework for technology & organization </li></ul></ul><ul><ul><li>Based on standards </li></ul></ul><ul><ul><li>Open Geospatial Consortium </li></ul></ul>
5.
OGC Web Services <ul><li>Can be integrated in Service-Oriented architectures & SDIs </li></ul><ul><li>Web Map Service </li></ul><ul><ul><li>Maps as plain images (PNG, GIF) </li></ul></ul><ul><li>Web Feature Service (vector data) </li></ul><ul><ul><li>Geography Markup Language </li></ul></ul><ul><ul><li>Query through Filter Encoding </li></ul></ul><ul><li>Web Coverage Service (raster data) </li></ul><ul><ul><li>e.g. GeoTiff </li></ul></ul>
6.
Hybrid Approach <ul><li>Distributed nodes providing different data on the Web </li></ul>
8.
Web-based dissemination GEONETCast data server Web Coverage Service Web Map Service Clients getMap getCoverage Query real-time and historic data through interoperable Web Services from different nodes Web Feature Service getFeature GML / KML
10.
Example MSG-2 data <ul><li>12 channels </li></ul><ul><li>3 km resolution </li></ul><ul><li>Served in GeoTIFF format </li></ul><ul><li>Update every 15 minutes </li></ul>
14.
MODIS data <ul><li>Moderate Resolution Imaging Spectroradiometer [Justice et al. 1998] </li></ul><ul><li>Operated by NASA </li></ul><ul><ul><li>Surface Reflectance </li></ul></ul><ul><ul><li>Land surface temperature </li></ul></ul><ul><ul><li>Vegetation index </li></ul></ul><ul><ul><li>Fire Products [Giglio et al. 2002] </li></ul></ul><ul><ul><li>Land Cover </li></ul></ul><ul><ul><li>Biological productivity </li></ul></ul>
15.
FireWebService <ul><li>Disaster management </li></ul><ul><li>Based on MODIS fire product (mod 14) </li></ul><ul><li>Identify potential fires </li></ul><ul><ul><li>Fire detection algorithm </li></ul></ul><ul><ul><li>Raster fire events as points </li></ul></ul><ul><ul><li>Confidence value </li></ul></ul>
18.
Integration of crowd-sourced information <ul><li>Identify related information through Google GeoCoding Service </li></ul><ul><li>Wikipedia </li></ul><ul><li>Panoramio </li></ul>
19.
Google Earth integration <ul><li>Fire events published through KML & NetworkLinks </li></ul>
20.
Implementation <ul><li>Based on Free and Open Source Software </li></ul><ul><li>GeoServer (WFS) & MapServer (WCS & WMS) </li></ul><ul><li>PostGIS </li></ul><ul><li>OpenLayers / GeoExt </li></ul><ul><li>Running at IFGI </li></ul><ul><ul><li>Integrated in StudMap 14 Project </li></ul></ul>
21.
Conclusion <ul><li>Global Change </li></ul><ul><ul><li>Large volume of (sensor) data in real-time </li></ul></ul><ul><ul><li>Global coverage & high resolution </li></ul></ul><ul><li>Hybrid approach </li></ul><ul><ul><li>Satellite-based & Web-based dissemination </li></ul></ul><ul><ul><li>Different nodes provide different data </li></ul></ul><ul><ul><li>AGILE, OGC & EuroSDR Persistent Testbed </li></ul></ul><ul><ul><li>Distributed non-redundant storage </li></ul></ul><ul><li>Use cases (raster & vector data) </li></ul><ul><ul><li>Meteorology </li></ul></ul><ul><ul><li>Fire Web Service </li></ul></ul><ul><li>Free and Open Source Software </li></ul>
22.
Thanks for your attention! <ul><li>swsl.uni-muenster.de /research/geonetcast/ </li></ul><ul><li>Theodor Foerster </li></ul><ul><li>[email_address] </li></ul>