A Hybrid Approach to Disseminate Large Volume Sensor Data for Monitoring Global Change

1,333 views

Published on

Presentation held at EOGC 2011 (http://www.eogc2011.tum.de/)

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,333
On SlideShare
0
From Embeds
0
Number of Embeds
62
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

A Hybrid Approach to Disseminate Large Volume Sensor Data for Monitoring Global Change

  1. 1. A Hybrid Approach to Disseminate Large Volume Sensor Data for Monitoring Global Change Theodor Foerster, Albert Remke & Georg Kaspar EOGC 2011, Munich
  2. 2. Motivation <ul><li>Global change </li></ul><ul><ul><li>Large volume of geodata </li></ul></ul><ul><ul><li>Global coverage & real-time </li></ul></ul><ul><li>Satellite-based dissemination system </li></ul><ul><ul><li>Proprietary standards </li></ul></ul><ul><li>Web-based dissemination </li></ul><ul><ul><li>Interoperability & Spatial Data Infrastructures </li></ul></ul><ul><li> Hybrid approach </li></ul>
  3. 3. GEONETCast – satellite-based dissemination system <ul><li>Free of charge </li></ul><ul><li>180 products - different applications </li></ul><ul><li>Global products – world-wide coverage </li></ul><ul><li>Real-time </li></ul>
  4. 4. Interoperability <ul><li>Establish common understanding on concepts </li></ul><ul><li>Web Services </li></ul><ul><ul><li>Common interfaces available through the Web </li></ul></ul><ul><ul><li>HTTP & XML </li></ul></ul><ul><li>Spatial Data Infrastructures </li></ul><ul><ul><li>Framework for technology & organization </li></ul></ul><ul><ul><li>Based on standards </li></ul></ul><ul><ul><li>Open Geospatial Consortium </li></ul></ul>
  5. 5. OGC Web Services <ul><li>Can be integrated in Service-Oriented architectures & SDIs </li></ul><ul><li>Web Map Service </li></ul><ul><ul><li>Maps as plain images (PNG, GIF) </li></ul></ul><ul><li>Web Feature Service (vector data) </li></ul><ul><ul><li>Geography Markup Language </li></ul></ul><ul><ul><li>Query through Filter Encoding </li></ul></ul><ul><li>Web Coverage Service (raster data) </li></ul><ul><ul><li>e.g. GeoTiff </li></ul></ul>
  6. 6. Hybrid Approach <ul><li>Distributed nodes providing different data on the Web </li></ul>
  7. 7. Receiving satellite-based data
  8. 8. Web-based dissemination GEONETCast data server Web Coverage Service Web Map Service Clients getMap getCoverage Query real-time and historic data through interoperable Web Services from different nodes Web Feature Service getFeature GML / KML
  9. 9. USE CASE <ul><li>MSG-2 data </li></ul>
  10. 10. Example MSG-2 data <ul><li>12 channels </li></ul><ul><li>3 km resolution </li></ul><ul><li>Served in GeoTIFF format </li></ul><ul><li>Update every 15 minutes </li></ul>
  11. 11. Architecture – MSG-2 data dissemination
  12. 12. Web-based data access - MSG-2 data  Retrieve raw data from WCS Hurricane Karl, 17th September 2010
  13. 13. USE CASE <ul><li>Fire Web Service </li></ul>
  14. 14. MODIS data <ul><li>Moderate Resolution Imaging Spectroradiometer [Justice et al. 1998] </li></ul><ul><li>Operated by NASA </li></ul><ul><ul><li>Surface Reflectance </li></ul></ul><ul><ul><li>Land surface temperature </li></ul></ul><ul><ul><li>Vegetation index </li></ul></ul><ul><ul><li>Fire Products [Giglio et al. 2002] </li></ul></ul><ul><ul><li>Land Cover </li></ul></ul><ul><ul><li>Biological productivity </li></ul></ul>
  15. 15. FireWebService <ul><li>Disaster management </li></ul><ul><li>Based on MODIS fire product (mod 14) </li></ul><ul><li>Identify potential fires </li></ul><ul><ul><li>Fire detection algorithm </li></ul></ul><ul><ul><li>Raster  fire events as points </li></ul></ul><ul><ul><li>Confidence value </li></ul></ul>
  16. 16. Architecture – Fire Web Service
  17. 17. Browser-based client application <ul><li>Query </li></ul><ul><li>Map </li></ul><ul><li>Inspect </li></ul>
  18. 18. Integration of crowd-sourced information <ul><li>Identify related information through Google GeoCoding Service </li></ul><ul><li>Wikipedia </li></ul><ul><li>Panoramio </li></ul>
  19. 19. Google Earth integration <ul><li>Fire events published through KML & NetworkLinks </li></ul>
  20. 20. Implementation <ul><li>Based on Free and Open Source Software </li></ul><ul><li>GeoServer (WFS) & MapServer (WCS & WMS) </li></ul><ul><li>PostGIS </li></ul><ul><li>OpenLayers / GeoExt </li></ul><ul><li>Running at IFGI </li></ul><ul><ul><li>Integrated in StudMap 14 Project </li></ul></ul>
  21. 21. Conclusion <ul><li>Global Change </li></ul><ul><ul><li>Large volume of (sensor) data in real-time </li></ul></ul><ul><ul><li>Global coverage & high resolution </li></ul></ul><ul><li>Hybrid approach </li></ul><ul><ul><li>Satellite-based & Web-based dissemination </li></ul></ul><ul><ul><li>Different nodes provide different data </li></ul></ul><ul><ul><li>AGILE, OGC & EuroSDR Persistent Testbed </li></ul></ul><ul><ul><li>Distributed non-redundant storage </li></ul></ul><ul><li>Use cases (raster & vector data) </li></ul><ul><ul><li>Meteorology </li></ul></ul><ul><ul><li>Fire Web Service </li></ul></ul><ul><li>Free and Open Source Software </li></ul>
  22. 22. Thanks for your attention! <ul><li>swsl.uni-muenster.de /research/geonetcast/ </li></ul><ul><li>Theodor Foerster </li></ul><ul><li>[email_address] </li></ul>

×