Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

0

Share

Download to read offline

Preparing Your Data for an Affirmative Action Plan: Workforce Snapshot

Download to read offline

Preparing your data for an Affirmative Action Plan is an essential component of your overall compliance strategy. In this presentation, we'll focus on how to prepare your workforce snapshot. Specifically, we'll discuss the kinds of data required, and talk about how and why bad or missing workforce snapshot data can render a data set useless for analysis purposes. Simple techniques for scrubbing data will be presented, and the webinar will conclude with a summary of common data validation tools.

Related Books

Free with a 30 day trial from Scribd

See all

Related Audiobooks

Free with a 30 day trial from Scribd

See all
  • Be the first to like this

Preparing Your Data for an Affirmative Action Plan: Workforce Snapshot

  1. 1. Preparing Your Datafor an Affirmative Action Plan: Workforce Snapshot Files presented by Carla Irwin President of Carla Irwin & Associates and  Stephanie R. Thomas, Ph.D. Founder and CEO of Thomas Econometrics
  2. 2. About the Webinar Series• “Getting Back To Basics”• Upcoming schedule: – 11/9: Applicant Flow – 11/30: Compensation• Series 2: “OFCCP Scheduling Letter  Preparedness”
  3. 3. Overview• Data requirements• Missing data and its effects• Data scrubbing and validation
  4. 4. Required Data• Employee‐level data• Fields to be populated – Employee Name/Number; – Race/Gender/Ethnicity; – Job Title;  – EEO‐1 / Job Group / Census Code / FLSA Status / FT or PT Status – Department, Location; – Hire / rehire / termination / promotion dates; – Salary Grade / Compensation information; – Manager Name
  5. 5. Non‐AAP Suggested Data• Expanded demographic information on other  protected characteristics – Age  – Disability status* – Veteran status* – Marital status – Sexual orientation
  6. 6. Required Documentation• Electronically‐maintained information used in  employment decisions: – Hire / rehire / promotion / termination; – Compensation; – FT / PT Status; – FLSA Status (exempt / nonexempt); – Leaves of Absence, FMLA, Accommodations, etc. – Any other information considered when making  employment decisions
  7. 7. Common Missing Data Points• Employee ID• Manager Name• FLSA Status• Census Code• Salary Grade / Band• Recent Hires• Recent Terms
  8. 8. Common Data Pitfalls• Timing Issues – Including employees terminated prior to snapshot  date; – Including employees hired after snapshot date.• Incorrect job title, job group, location,  department, pay rate, etc.
  9. 9. The Effect of Missing Data• Bad Data = Bad AAP• Inaccurate conclusions – Where are your real issues?• Time / Expense / Resources – Internal cost – External cost• Audit & Litigation Issues
  10. 10. Data Scrubbing & Validation• Do We Have the Right People?• Do We Have the Right Codes?• Are We Consistent?• Where Are Our Data Gaps?
  11. 11. Data Scrubbing & Validation It’s an interactive process
  12. 12. Conclusion• The Workforce Snapshot is the “foundation  data” for the Affirmative Action Plan
  13. 13. Carla Irwin President of Carla Irwin & Associates cirwin@hrlinkgroup.com 815.254.0690 www.carlairwininc.com &  Stephanie R. Thomas, Ph.D.Founder and CEO of Thomas Econometrics sthomas@thomasecon.com 215.642.0072 www.thomasecon.com

Preparing your data for an Affirmative Action Plan is an essential component of your overall compliance strategy. In this presentation, we'll focus on how to prepare your workforce snapshot. Specifically, we'll discuss the kinds of data required, and talk about how and why bad or missing workforce snapshot data can render a data set useless for analysis purposes. Simple techniques for scrubbing data will be presented, and the webinar will conclude with a summary of common data validation tools.

Views

Total views

580

On Slideshare

0

From embeds

0

Number of embeds

1

Actions

Downloads

5

Shares

0

Comments

0

Likes

0

×