SlideShare a Scribd company logo
1 of 15
Download to read offline
MADE BY :- ANURAG SINGH
ROLL NO :- 01
SCHOOL :- TAGORE ACADEMY PUBLIC SCHOOL
i) Motion :- is the change in position of a body with time.
Motion can be described in terms of the distance moved or the
displacement.
ii) Distance moved :- is the actual length of the path travelled by a
body.
iii) Displacement :- is the length of the shortest path travelled by a
body from its initial position to its final position.
Eg :- If a body starts moving in a straight line from origin O and
moves through C and B and reaches A and then moves back and
reaches C through B, then
Distance travelled = 60 + 35 = 95 km
Displacement = 25 km
O C B A
0 5 10 15 20 25 30 35 40 45 50 55 60 km
i) Uniform motion :- If a body travels equal distances in equal intervals of
time, it is said to be in uniform motion.
ii) Non uniform motion :- If a body travels unequal distances in equal
intervals of time, it is said to be in non uniform motion.
iii) Speed :- of a body is the distance travelled by the body in unit time.
Distance
Speed =
Time
If a body travels a distance s in time t then its speed v is
s
v =
t
The SI unit of speed is metre per second m/s or ms -1
Since speed has only magnitude it is a scalar quantity.
iv) Average speed :- is the ratio of the total distance travelled to the total time
taken.
Total distance travelled
Average speed =
Total time taken
The rate of motion of a body is more meaningful if we specify its direction of
motion along with speed. The quantity which specifies both the direction of
motion and speed is velocity.
i) Velocity :- of a body is the displacement of the body per unit time.
Displacement
Velocity =
Time taken
Since velocity has both magnitude and direction, it is a vector quantity.
ii) Average velocity :- is the ratio of the total displacement to the total
time taken.
Total displacement
Average velocity =
Total time taken
Average velocity is also the mean of the initial velocity u and final velocity v.
Initial velocity + Final velocity u + v
Average velocity = vav =
2 2
Speed and velocity have the same units m/s or ms -1
During uniform motion of a body in a straight line the velocity remains
constant with time. In this case the change in velocity at any time interval is zero
( no change in velocity).
During non uniform motion the velocity changes with time. In this case the
change in velocity at any time interval is not zero. It may be positive (+ ve) or
negative (- ve).
The quantity which specifies changes in velocity is acceleration.
Acceleration :- is the change in velocity of a body per unit time.( or the rate of
change of velocity.)
Change in velocity
Acceleration =
Time
If the velocity of a body changes from initial value u to final value v in time t,
then acceleration a is
v - u
a =
t
The SI unit of acceleration is ms - 2
Uniform acceleration :- If the change in velocity is equal in equal intervals of
time it is uniform acceleration.
Non uniform acceleration :- If the change in velocity is unequal in equal
intervals of time it is non uniform acceleration.
a) Distance – Time graphs :-
The change in the position of a body with time can be represented on the
distance time graph. In this graph distance is taken on the y – axis and time is
taken on the x – axis.
i) The distance time graph for uniform speed is a straight line ( linear ). This is
because in uniform speed a body travels equal distances in equal intervals of time.
We can determine the speed of the body from the distance – time graph.
For the speed of the body between the points A and B, distance is (s2 – s1) and
time is (t2 – t1).
s (s2 – s1)
v = ---- v = -----------
t (t2 – t1)
20 – 10 10
= --------- = ----
10 – 5 5
= 2 ms -1
A
B
10
20
30
t1 t2
s1
s2
C
Time (s)
Distance(m)
X
Y
5 10 15 20
Distance – time graph for a body moving with uniform speed
0
ii) The distance – time graph for non uniform motion is non linear. This is
because in non uniform speed a body travels unequal distances in equal
intervals of time.
20
40
Time (s)
Distance(m)
X
10
30
50 10 15 20
Distance – time graph for a body moving with non uniform speed
Y
The change in the velocity of a body with time can be represented on the
velocity time graph. In this graph velocity is taken on the y – axis and time is
taken on the x – axis.
i) If a body moves with uniform velocity, the graph will be a straight line
parallel to the x – axis . This is because the velocity does not change with time.
To determine the distance travelled by the body between the points A and B
with velocity 20 km h-1
s
v = ---
t
s = v x t
v = 20 km h-1
= AC or BD
t = t2 – t1 = DC
= AC (t2 – t1)
s = AC X CD
s = area of the rectangle ABDC
20
40
Time (s)
Velocity(kmh-1
)
X
10
30
50 10 15 20
t1 t2
A B
C D
Velocity – time graph for a body moving with uniform velocity
Y
ii) If a body whose velocity is increasing with time, the graph is a straight line
having an increasing slope. This is because the velocity increases by equal
amounts with equal intervals of time.
The area under the velocity – time graph is the distance (magnitude of
displacement) of the body.
The distance travelled by a body between the points A and E is the area
ABCDE under the velocity – time graph.
s = area ABCDE
= area of rectangle ABCD
+ area of triangle ADE
1
s = AB X BC + --- ( AD X DE )
2
A
B
10
20
30
t1 t2 C
Time (s)
Velocity(ms-1
)
X
Y
10 20 30 40
Velocity – time graph for a body moving with uniform acceleration
D
E
0
iii) If a body whose velocity is decreasing with time, the graph is a straight line
having an decreasing slope. This is because the velocity decreases by equal
amounts with equal intervals of time.
iv) If a body whose velocity is non uniform, the graph shows different variations.
This is because the velocity changes by unequal amounts in equal intervals of
time.
20
40
Time (s)
Velocity(ms-1
)
X
10
30
50 10 15 20
20
40
Time (s)
Velocity(ms-1
)
X
10
30
50 10 15 20
Velocity – time graph for a uniformly
decelerated motion
Velocity – time graph for
non uniform acceleration
Y Y
The motion of a body moving with uniform acceleration can be
described with the help of three equations called equations of motion.
The equations of motion are :-
i) v = u + at
ii) s = ut + ½ at2
iii) 2as = v2
– u2
where u - is the initial velocity
v - is the final velocity
a - is acceleration
t - is the time
s - is the distance traveled
Consider a velocity – time graph for a body moving with uniform acceleration ‘a’.
The initial velocity is u at A and final velocity is v at B in time t.
Perpendicular lines BC and BE are drawn from point B to the time and velocity
axes so that the initial velocity is OA and final velocity is BC and time interval is
OC. Draw AD parallel to OC.
We observe that
BC = BD + DC = BD + OA
Substituting BC = v and OA = u
We get v = BD + u
or BD = v - u
Change in velocity
Acceleration = ---------------------------
Time
BD BD v - u
a = ----- = ----- or a = ---------
AD OC t
v – u = at or v = u + at Time (s)
Velocity(ms-1
)
XO
Velocity – time graph for a uniformly
accelerated motion
Y
t
u
v
A
B
C
D
E
Consider a velocity – time graph for a body moving with uniform acceleration
‘a’ travelled a distance s in time t.
The distance traveled by the body between the points A and B is the area
OABC.
s = area OABC ( which is a trapezium )
= area of rectangle OABC + area of triangle ABD
1
= OA X OC + --- ( AD X BD )
2
Substituting OA = u, OC = AD = t,
BD = v – u = at
We get
1
s = u x t + -- ( t x at )
2
or s = ut + ½ at2
Time (s)
Velocity(ms-1
)
O
Velocity – time graph for a uniformly
accelerated motion
t
u
v
A
B
C
D
E
Consider a velocity – time graph for a body moving with uniform acceleration ‘a’
travelled a distance s in time t.
The distance travelled by the body between the points A and B is the area OABC.
s = area of trapezium OABC
(OA + BC) X OC
s = ----------------------
2
Substituting OA = u, BC = v and OC = t
( u + v ) X t
We get s = -----------------
2
From velocity – time relation
( v – u )
t = -----------
a
( v + u ) X ( v – u )
s = ----------------------- or 2as = v2
– u 2
2a
Time (s)
Velocity(ms-1
)
O
Velocity – time graph for a uniformly
accelerated motion
t
u
v
A
B
C
D
E
The motion of a body in a circular path is called circular motion.
Uniform circular motion :- If a body moves in a circular path with
uniform speed, its motion is called uniform circular motion.
Uniform circular motion is accelerated motion because in a circular motion a
body continuously changes its direction.
The circumference of a circle of radius r is given by 2лr. If a body takes time t to
go once around the circular path, then the velocity v is given by
2лr
v = ----
t

More Related Content

What's hot

Motion in a straight line
Motion in a straight lineMotion in a straight line
Motion in a straight lineMV Rajakumar
 
Motion in a straight line
Motion in a straight lineMotion in a straight line
Motion in a straight lineVIDYAGAUDE
 
force and laws of motion
 force and laws of motion force and laws of motion
force and laws of motionsanskar hotla
 
motion class 9 physics
 motion class 9 physics motion class 9 physics
motion class 9 physicsshashankgarg57
 
Physics equations of motion
Physics equations of motionPhysics equations of motion
Physics equations of motionArvan Chaudhury
 
Ppt on equations of motion by graphival method made by mudit gupta
Ppt on equations of motion by graphival method made by mudit guptaPpt on equations of motion by graphival method made by mudit gupta
Ppt on equations of motion by graphival method made by mudit guptaMUDIT GUPTA
 
Motion in a Stright Line, Class 11th ,Chapter 1, Physics
Motion in a Stright Line, Class 11th ,Chapter 1, PhysicsMotion in a Stright Line, Class 11th ,Chapter 1, Physics
Motion in a Stright Line, Class 11th ,Chapter 1, PhysicsMayank Tiwari
 
Scalar and vector quantities
Scalar  and vector quantities Scalar  and vector quantities
Scalar and vector quantities faraz rajput
 
Displacement and Velocity
Displacement and VelocityDisplacement and Velocity
Displacement and Velocitymlong24
 
MOTION Class IX PowerPoint Presentation
MOTION Class IX PowerPoint Presentation MOTION Class IX PowerPoint Presentation
MOTION Class IX PowerPoint Presentation Arpan Bose
 

What's hot (20)

Motion Class 9
Motion Class 9 Motion Class 9
Motion Class 9
 
Motion in a straight line
Motion in a straight lineMotion in a straight line
Motion in a straight line
 
Physics ppt
Physics pptPhysics ppt
Physics ppt
 
Motion in a straight line
Motion in a straight lineMotion in a straight line
Motion in a straight line
 
force and laws of motion
 force and laws of motion force and laws of motion
force and laws of motion
 
Chapter 8 motion
Chapter 8 motionChapter 8 motion
Chapter 8 motion
 
gravitation
gravitationgravitation
gravitation
 
motion class 9 physics
 motion class 9 physics motion class 9 physics
motion class 9 physics
 
Physics equations of motion
Physics equations of motionPhysics equations of motion
Physics equations of motion
 
Ppt on equations of motion by graphival method made by mudit gupta
Ppt on equations of motion by graphival method made by mudit guptaPpt on equations of motion by graphival method made by mudit gupta
Ppt on equations of motion by graphival method made by mudit gupta
 
Motion in a Stright Line, Class 11th ,Chapter 1, Physics
Motion in a Stright Line, Class 11th ,Chapter 1, PhysicsMotion in a Stright Line, Class 11th ,Chapter 1, Physics
Motion in a Stright Line, Class 11th ,Chapter 1, Physics
 
12 sound
12 sound12 sound
12 sound
 
Motion
MotionMotion
Motion
 
Scalar and vector quantities
Scalar  and vector quantities Scalar  and vector quantities
Scalar and vector quantities
 
Equations of motion
Equations of motionEquations of motion
Equations of motion
 
Displacement and Velocity
Displacement and VelocityDisplacement and Velocity
Displacement and Velocity
 
sound
soundsound
sound
 
Motion
MotionMotion
Motion
 
MOTION Class IX PowerPoint Presentation
MOTION Class IX PowerPoint Presentation MOTION Class IX PowerPoint Presentation
MOTION Class IX PowerPoint Presentation
 
Kinematics(class)
Kinematics(class)Kinematics(class)
Kinematics(class)
 

Similar to Motion

Karthikeyan ppt on motion class 9 (1)
Karthikeyan ppt on motion class 9 (1)Karthikeyan ppt on motion class 9 (1)
Karthikeyan ppt on motion class 9 (1)KarthiKeyan1512
 
8motion 140511012634-phpapp01
8motion 140511012634-phpapp018motion 140511012634-phpapp01
8motion 140511012634-phpapp01rashispdz
 
Ch 8 Motion 2.pptx.pdf
Ch 8 Motion 2.pptx.pdfCh 8 Motion 2.pptx.pdf
Ch 8 Motion 2.pptx.pdfbablivashisht
 
Chapter no. 6 linear mo
Chapter no. 6 linear moChapter no. 6 linear mo
Chapter no. 6 linear moPralhad Kore
 
Motion notes by R K Chaudhari sir
Motion notes by R K Chaudhari sirMotion notes by R K Chaudhari sir
Motion notes by R K Chaudhari sirraghvendra0123
 
CH-3Motion in a St Line.pdf
CH-3Motion in a St Line.pdfCH-3Motion in a St Line.pdf
CH-3Motion in a St Line.pdfAmitSing9
 
CBSE Class 9&10th Sample eBook
CBSE Class 9&10th Sample eBookCBSE Class 9&10th Sample eBook
CBSE Class 9&10th Sample eBookMiso Study
 
CBSE Class 9th Sample eBook
CBSE Class 9th Sample eBookCBSE Class 9th Sample eBook
CBSE Class 9th Sample eBookMiso Study
 
NCERT class 9th science chapter 8
NCERT class 9th science chapter 8NCERT class 9th science chapter 8
NCERT class 9th science chapter 8Santosh Upadhyay
 
Chapter 2-student
Chapter 2-studentChapter 2-student
Chapter 2-studentTommy Moss
 
Kinematics of Linear Motion​
Kinematics of Linear Motion​Kinematics of Linear Motion​
Kinematics of Linear Motion​Reema
 
sanchitppt-161014144249 (1).pdf
sanchitppt-161014144249 (1).pdfsanchitppt-161014144249 (1).pdf
sanchitppt-161014144249 (1).pdfMOHDHAMZAKHAN6
 
Motion for class 9th
Motion for class 9thMotion for class 9th
Motion for class 9thSanchit Kumar
 
Linear_Motion-1.pptx
Linear_Motion-1.pptxLinear_Motion-1.pptx
Linear_Motion-1.pptxRapandaMhango
 

Similar to Motion (20)

8motion [autosaved]
8motion [autosaved]8motion [autosaved]
8motion [autosaved]
 
Karthikeyan ppt on motion class 9 (1)
Karthikeyan ppt on motion class 9 (1)Karthikeyan ppt on motion class 9 (1)
Karthikeyan ppt on motion class 9 (1)
 
8motion 140511012634-phpapp01
8motion 140511012634-phpapp018motion 140511012634-phpapp01
8motion 140511012634-phpapp01
 
Motion science ppt
Motion science pptMotion science ppt
Motion science ppt
 
Motion
MotionMotion
Motion
 
IX-8-Motion.ppt
IX-8-Motion.pptIX-8-Motion.ppt
IX-8-Motion.ppt
 
Ch 8 Motion 2.pptx.pdf
Ch 8 Motion 2.pptx.pdfCh 8 Motion 2.pptx.pdf
Ch 8 Motion 2.pptx.pdf
 
Chapter no. 6 linear mo
Chapter no. 6 linear moChapter no. 6 linear mo
Chapter no. 6 linear mo
 
Motion notes by R K Chaudhari sir
Motion notes by R K Chaudhari sirMotion notes by R K Chaudhari sir
Motion notes by R K Chaudhari sir
 
CH-3Motion in a St Line.pdf
CH-3Motion in a St Line.pdfCH-3Motion in a St Line.pdf
CH-3Motion in a St Line.pdf
 
CBSE Class 9&10th Sample eBook
CBSE Class 9&10th Sample eBookCBSE Class 9&10th Sample eBook
CBSE Class 9&10th Sample eBook
 
CBSE Class 9th Sample eBook
CBSE Class 9th Sample eBookCBSE Class 9th Sample eBook
CBSE Class 9th Sample eBook
 
NCERT class 9th science chapter 8
NCERT class 9th science chapter 8NCERT class 9th science chapter 8
NCERT class 9th science chapter 8
 
Chapter 2-student
Chapter 2-studentChapter 2-student
Chapter 2-student
 
Kinematics of Linear Motion​
Kinematics of Linear Motion​Kinematics of Linear Motion​
Kinematics of Linear Motion​
 
CH 8 MOTION.pdf
CH 8 MOTION.pdfCH 8 MOTION.pdf
CH 8 MOTION.pdf
 
sanchitppt-161014144249 (1).pdf
sanchitppt-161014144249 (1).pdfsanchitppt-161014144249 (1).pdf
sanchitppt-161014144249 (1).pdf
 
sanchitppt-161014144249.pdf
sanchitppt-161014144249.pdfsanchitppt-161014144249.pdf
sanchitppt-161014144249.pdf
 
Motion for class 9th
Motion for class 9thMotion for class 9th
Motion for class 9th
 
Linear_Motion-1.pptx
Linear_Motion-1.pptxLinear_Motion-1.pptx
Linear_Motion-1.pptx
 

Recently uploaded

Vani Magazine - Quarterly Magazine of Seshadripuram Educational Trust
Vani Magazine - Quarterly Magazine of Seshadripuram Educational TrustVani Magazine - Quarterly Magazine of Seshadripuram Educational Trust
Vani Magazine - Quarterly Magazine of Seshadripuram Educational TrustSavipriya Raghavendra
 
Ultra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxUltra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxDr. Asif Anas
 
How to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesHow to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesCeline George
 
Work Experience for psp3 portfolio sasha
Work Experience for psp3 portfolio sashaWork Experience for psp3 portfolio sasha
Work Experience for psp3 portfolio sashasashalaycock03
 
How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17Celine George
 
Quality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICEQuality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICESayali Powar
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxAditiChauhan701637
 
How to Solve Singleton Error in the Odoo 17
How to Solve Singleton Error in the  Odoo 17How to Solve Singleton Error in the  Odoo 17
How to Solve Singleton Error in the Odoo 17Celine George
 
The basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptxThe basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptxheathfieldcps1
 
Drug Information Services- DIC and Sources.
Drug Information Services- DIC and Sources.Drug Information Services- DIC and Sources.
Drug Information Services- DIC and Sources.raviapr7
 
3.21.24 The Origins of Black Power.pptx
3.21.24  The Origins of Black Power.pptx3.21.24  The Origins of Black Power.pptx
3.21.24 The Origins of Black Power.pptxmary850239
 
Unveiling the Intricacies of Leishmania donovani: Structure, Life Cycle, Path...
Unveiling the Intricacies of Leishmania donovani: Structure, Life Cycle, Path...Unveiling the Intricacies of Leishmania donovani: Structure, Life Cycle, Path...
Unveiling the Intricacies of Leishmania donovani: Structure, Life Cycle, Path...Dr. Asif Anas
 
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptxClinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptxraviapr7
 
AUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptxAUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptxiammrhaywood
 
Optical Fibre and It's Applications.pptx
Optical Fibre and It's Applications.pptxOptical Fibre and It's Applications.pptx
Optical Fibre and It's Applications.pptxPurva Nikam
 
CapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptxCapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptxCapitolTechU
 
EBUS5423 Data Analytics and Reporting Bl
EBUS5423 Data Analytics and Reporting BlEBUS5423 Data Analytics and Reporting Bl
EBUS5423 Data Analytics and Reporting BlDr. Bruce A. Johnson
 
HED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdfHED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdfMohonDas
 

Recently uploaded (20)

Vani Magazine - Quarterly Magazine of Seshadripuram Educational Trust
Vani Magazine - Quarterly Magazine of Seshadripuram Educational TrustVani Magazine - Quarterly Magazine of Seshadripuram Educational Trust
Vani Magazine - Quarterly Magazine of Seshadripuram Educational Trust
 
Ultra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxUltra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptx
 
How to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 SalesHow to Manage Cross-Selling in Odoo 17 Sales
How to Manage Cross-Selling in Odoo 17 Sales
 
Work Experience for psp3 portfolio sasha
Work Experience for psp3 portfolio sashaWork Experience for psp3 portfolio sasha
Work Experience for psp3 portfolio sasha
 
Personal Resilience in Project Management 2 - TV Edit 1a.pdf
Personal Resilience in Project Management 2 - TV Edit 1a.pdfPersonal Resilience in Project Management 2 - TV Edit 1a.pdf
Personal Resilience in Project Management 2 - TV Edit 1a.pdf
 
How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17
 
Quality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICEQuality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICE
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptx
 
How to Solve Singleton Error in the Odoo 17
How to Solve Singleton Error in the  Odoo 17How to Solve Singleton Error in the  Odoo 17
How to Solve Singleton Error in the Odoo 17
 
The basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptxThe basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptx
 
Prelims of Kant get Marx 2.0: a general politics quiz
Prelims of Kant get Marx 2.0: a general politics quizPrelims of Kant get Marx 2.0: a general politics quiz
Prelims of Kant get Marx 2.0: a general politics quiz
 
Drug Information Services- DIC and Sources.
Drug Information Services- DIC and Sources.Drug Information Services- DIC and Sources.
Drug Information Services- DIC and Sources.
 
3.21.24 The Origins of Black Power.pptx
3.21.24  The Origins of Black Power.pptx3.21.24  The Origins of Black Power.pptx
3.21.24 The Origins of Black Power.pptx
 
Unveiling the Intricacies of Leishmania donovani: Structure, Life Cycle, Path...
Unveiling the Intricacies of Leishmania donovani: Structure, Life Cycle, Path...Unveiling the Intricacies of Leishmania donovani: Structure, Life Cycle, Path...
Unveiling the Intricacies of Leishmania donovani: Structure, Life Cycle, Path...
 
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptxClinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
 
AUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptxAUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptx
 
Optical Fibre and It's Applications.pptx
Optical Fibre and It's Applications.pptxOptical Fibre and It's Applications.pptx
Optical Fibre and It's Applications.pptx
 
CapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptxCapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptx
 
EBUS5423 Data Analytics and Reporting Bl
EBUS5423 Data Analytics and Reporting BlEBUS5423 Data Analytics and Reporting Bl
EBUS5423 Data Analytics and Reporting Bl
 
HED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdfHED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdf
 

Motion

  • 1. MADE BY :- ANURAG SINGH ROLL NO :- 01 SCHOOL :- TAGORE ACADEMY PUBLIC SCHOOL
  • 2. i) Motion :- is the change in position of a body with time. Motion can be described in terms of the distance moved or the displacement. ii) Distance moved :- is the actual length of the path travelled by a body. iii) Displacement :- is the length of the shortest path travelled by a body from its initial position to its final position. Eg :- If a body starts moving in a straight line from origin O and moves through C and B and reaches A and then moves back and reaches C through B, then Distance travelled = 60 + 35 = 95 km Displacement = 25 km O C B A 0 5 10 15 20 25 30 35 40 45 50 55 60 km
  • 3. i) Uniform motion :- If a body travels equal distances in equal intervals of time, it is said to be in uniform motion. ii) Non uniform motion :- If a body travels unequal distances in equal intervals of time, it is said to be in non uniform motion. iii) Speed :- of a body is the distance travelled by the body in unit time. Distance Speed = Time If a body travels a distance s in time t then its speed v is s v = t The SI unit of speed is metre per second m/s or ms -1 Since speed has only magnitude it is a scalar quantity. iv) Average speed :- is the ratio of the total distance travelled to the total time taken. Total distance travelled Average speed = Total time taken
  • 4. The rate of motion of a body is more meaningful if we specify its direction of motion along with speed. The quantity which specifies both the direction of motion and speed is velocity. i) Velocity :- of a body is the displacement of the body per unit time. Displacement Velocity = Time taken Since velocity has both magnitude and direction, it is a vector quantity. ii) Average velocity :- is the ratio of the total displacement to the total time taken. Total displacement Average velocity = Total time taken Average velocity is also the mean of the initial velocity u and final velocity v. Initial velocity + Final velocity u + v Average velocity = vav = 2 2 Speed and velocity have the same units m/s or ms -1
  • 5. During uniform motion of a body in a straight line the velocity remains constant with time. In this case the change in velocity at any time interval is zero ( no change in velocity). During non uniform motion the velocity changes with time. In this case the change in velocity at any time interval is not zero. It may be positive (+ ve) or negative (- ve). The quantity which specifies changes in velocity is acceleration. Acceleration :- is the change in velocity of a body per unit time.( or the rate of change of velocity.) Change in velocity Acceleration = Time If the velocity of a body changes from initial value u to final value v in time t, then acceleration a is v - u a = t The SI unit of acceleration is ms - 2 Uniform acceleration :- If the change in velocity is equal in equal intervals of time it is uniform acceleration. Non uniform acceleration :- If the change in velocity is unequal in equal intervals of time it is non uniform acceleration.
  • 6. a) Distance – Time graphs :- The change in the position of a body with time can be represented on the distance time graph. In this graph distance is taken on the y – axis and time is taken on the x – axis. i) The distance time graph for uniform speed is a straight line ( linear ). This is because in uniform speed a body travels equal distances in equal intervals of time. We can determine the speed of the body from the distance – time graph. For the speed of the body between the points A and B, distance is (s2 – s1) and time is (t2 – t1). s (s2 – s1) v = ---- v = ----------- t (t2 – t1) 20 – 10 10 = --------- = ---- 10 – 5 5 = 2 ms -1 A B 10 20 30 t1 t2 s1 s2 C Time (s) Distance(m) X Y 5 10 15 20 Distance – time graph for a body moving with uniform speed 0
  • 7. ii) The distance – time graph for non uniform motion is non linear. This is because in non uniform speed a body travels unequal distances in equal intervals of time. 20 40 Time (s) Distance(m) X 10 30 50 10 15 20 Distance – time graph for a body moving with non uniform speed Y
  • 8. The change in the velocity of a body with time can be represented on the velocity time graph. In this graph velocity is taken on the y – axis and time is taken on the x – axis. i) If a body moves with uniform velocity, the graph will be a straight line parallel to the x – axis . This is because the velocity does not change with time. To determine the distance travelled by the body between the points A and B with velocity 20 km h-1 s v = --- t s = v x t v = 20 km h-1 = AC or BD t = t2 – t1 = DC = AC (t2 – t1) s = AC X CD s = area of the rectangle ABDC 20 40 Time (s) Velocity(kmh-1 ) X 10 30 50 10 15 20 t1 t2 A B C D Velocity – time graph for a body moving with uniform velocity Y
  • 9. ii) If a body whose velocity is increasing with time, the graph is a straight line having an increasing slope. This is because the velocity increases by equal amounts with equal intervals of time. The area under the velocity – time graph is the distance (magnitude of displacement) of the body. The distance travelled by a body between the points A and E is the area ABCDE under the velocity – time graph. s = area ABCDE = area of rectangle ABCD + area of triangle ADE 1 s = AB X BC + --- ( AD X DE ) 2 A B 10 20 30 t1 t2 C Time (s) Velocity(ms-1 ) X Y 10 20 30 40 Velocity – time graph for a body moving with uniform acceleration D E 0
  • 10. iii) If a body whose velocity is decreasing with time, the graph is a straight line having an decreasing slope. This is because the velocity decreases by equal amounts with equal intervals of time. iv) If a body whose velocity is non uniform, the graph shows different variations. This is because the velocity changes by unequal amounts in equal intervals of time. 20 40 Time (s) Velocity(ms-1 ) X 10 30 50 10 15 20 20 40 Time (s) Velocity(ms-1 ) X 10 30 50 10 15 20 Velocity – time graph for a uniformly decelerated motion Velocity – time graph for non uniform acceleration Y Y
  • 11. The motion of a body moving with uniform acceleration can be described with the help of three equations called equations of motion. The equations of motion are :- i) v = u + at ii) s = ut + ½ at2 iii) 2as = v2 – u2 where u - is the initial velocity v - is the final velocity a - is acceleration t - is the time s - is the distance traveled
  • 12. Consider a velocity – time graph for a body moving with uniform acceleration ‘a’. The initial velocity is u at A and final velocity is v at B in time t. Perpendicular lines BC and BE are drawn from point B to the time and velocity axes so that the initial velocity is OA and final velocity is BC and time interval is OC. Draw AD parallel to OC. We observe that BC = BD + DC = BD + OA Substituting BC = v and OA = u We get v = BD + u or BD = v - u Change in velocity Acceleration = --------------------------- Time BD BD v - u a = ----- = ----- or a = --------- AD OC t v – u = at or v = u + at Time (s) Velocity(ms-1 ) XO Velocity – time graph for a uniformly accelerated motion Y t u v A B C D E
  • 13. Consider a velocity – time graph for a body moving with uniform acceleration ‘a’ travelled a distance s in time t. The distance traveled by the body between the points A and B is the area OABC. s = area OABC ( which is a trapezium ) = area of rectangle OABC + area of triangle ABD 1 = OA X OC + --- ( AD X BD ) 2 Substituting OA = u, OC = AD = t, BD = v – u = at We get 1 s = u x t + -- ( t x at ) 2 or s = ut + ½ at2 Time (s) Velocity(ms-1 ) O Velocity – time graph for a uniformly accelerated motion t u v A B C D E
  • 14. Consider a velocity – time graph for a body moving with uniform acceleration ‘a’ travelled a distance s in time t. The distance travelled by the body between the points A and B is the area OABC. s = area of trapezium OABC (OA + BC) X OC s = ---------------------- 2 Substituting OA = u, BC = v and OC = t ( u + v ) X t We get s = ----------------- 2 From velocity – time relation ( v – u ) t = ----------- a ( v + u ) X ( v – u ) s = ----------------------- or 2as = v2 – u 2 2a Time (s) Velocity(ms-1 ) O Velocity – time graph for a uniformly accelerated motion t u v A B C D E
  • 15. The motion of a body in a circular path is called circular motion. Uniform circular motion :- If a body moves in a circular path with uniform speed, its motion is called uniform circular motion. Uniform circular motion is accelerated motion because in a circular motion a body continuously changes its direction. The circumference of a circle of radius r is given by 2лr. If a body takes time t to go once around the circular path, then the velocity v is given by 2лr v = ---- t