SlideShare a Scribd company logo

警察庁オープンデータで交通事故の世界にDeepDive!

Machine Learning 15minutes! Broadcast #59 での発表用スライドです。

1 of 41
Download to read offline
警察庁オープンデータで
交通事故の世界にDeepDive!
2021/09/25
Machine Learning 15minutes! Broadcast #59
SKUE
自己紹介
● 名前
○ SKUE ( Mr_Sakaue )
● バックグラウンド
○ 大学・大学院で経済学・統計学
● 仕事
○ 事業会社の分析部門のマネジャー兼データサイエンティスト
■ データサイエンティスト募集中です!
● スキル
○ Python, R, SQL
● 趣味
○ トランペット, ブログ作成, 料理
2
http://kamonohashiperry.com/
研究動機
3
研究動機
● 仕事帰りに幹線道路(246号線)の横断歩道を渡ろうとした際に、赤信号にも関
わらず減速せずに突っ込んできた自動車に危うく跳ねられかけた。それをきっか
けに、交通事故の危険なエリアや時間帯などについて関心を持つに至った。
4
先行研究
5
先行研究
● “Data-Driven Urban
TrafficAccidentAnalysis and Prediction
Using Logit and Machine Learning-Based
Pattern Recognition Models”
○ 2019年〜2020年のイランの交通事故データ
(Rashtという州都)で965レコード
○ 負傷or死亡のフラグを従属変数にしている。
物的損害のみは0となる。
○ 天候や時間帯、韓国のKIA自動車かどうかな
どを説明変数にしている。
6

Recommended

BMS Molecular Translation 3rd place solution
BMS Molecular Translation 3rd place solutionBMS Molecular Translation 3rd place solution
BMS Molecular Translation 3rd place solutionKazuki Fujikawa
 
Deeplearning輪読会
Deeplearning輪読会Deeplearning輪読会
Deeplearning輪読会正志 坪坂
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2Preferred Networks
 
[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation
[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation
[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic SegmentationDeep Learning JP
 
【DL輪読会】Visual Classification via Description from Large Language Models (ICLR...
【DL輪読会】Visual Classification via Description from Large Language Models (ICLR...【DL輪読会】Visual Classification via Description from Large Language Models (ICLR...
【DL輪読会】Visual Classification via Description from Large Language Models (ICLR...Deep Learning JP
 
言語モデル入門 (第二版)
言語モデル入門 (第二版)言語モデル入門 (第二版)
言語モデル入門 (第二版)Yoshinari Fujinuma
 
Hyperoptとその周辺について
Hyperoptとその周辺についてHyperoptとその周辺について
Hyperoptとその周辺についてKeisuke Hosaka
 
[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...
[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...
[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...Deep Learning JP
 

More Related Content

What's hot

画像をテキストで検索したい!(OpenAI CLIP) - VRC-LT #15
画像をテキストで検索したい!(OpenAI CLIP) - VRC-LT #15画像をテキストで検索したい!(OpenAI CLIP) - VRC-LT #15
画像をテキストで検索したい!(OpenAI CLIP) - VRC-LT #15Shuyo Nakatani
 
[丸ノ内アナリティクスバンビーノ#23]データドリブン施策によるサービス品質向上の取り組み
[丸ノ内アナリティクスバンビーノ#23]データドリブン施策によるサービス品質向上の取り組み[丸ノ内アナリティクスバンビーノ#23]データドリブン施策によるサービス品質向上の取り組み
[丸ノ内アナリティクスバンビーノ#23]データドリブン施策によるサービス品質向上の取り組みTeruyuki Sakaue
 
Superpixel Sampling Networks
Superpixel Sampling NetworksSuperpixel Sampling Networks
Superpixel Sampling Networksyukihiro domae
 
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient DescentDeep Learning JP
 
機械学習 入門
機械学習 入門機械学習 入門
機械学習 入門Hayato Maki
 
【DL輪読会】Transporters with Visual Foresight for Solving Unseen Rearrangement Tasks
【DL輪読会】Transporters with Visual Foresight for Solving Unseen Rearrangement Tasks【DL輪読会】Transporters with Visual Foresight for Solving Unseen Rearrangement Tasks
【DL輪読会】Transporters with Visual Foresight for Solving Unseen Rearrangement TasksDeep Learning JP
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門ryosuke-kojima
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習Deep Learning JP
 
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...Deep Learning JP
 
決定木・回帰木に基づくアンサンブル学習の最近
決定木・回帰木に基づくアンサンブル学習の最近決定木・回帰木に基づくアンサンブル学習の最近
決定木・回帰木に基づくアンサンブル学習の最近Ichigaku Takigawa
 
ICML 2020 最適輸送まとめ
ICML 2020 最適輸送まとめICML 2020 最適輸送まとめ
ICML 2020 最適輸送まとめohken
 
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion ModelsDeep Learning JP
 
深層学習とTensorFlow入門
深層学習とTensorFlow入門深層学習とTensorFlow入門
深層学習とTensorFlow入門tak9029
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化Yusuke Uchida
 
BERT分類ワークショップ.pptx
BERT分類ワークショップ.pptxBERT分類ワークショップ.pptx
BERT分類ワークショップ.pptxKouta Nakayama
 
SakataMoriLab GNN勉強会第一回資料
SakataMoriLab GNN勉強会第一回資料SakataMoriLab GNN勉強会第一回資料
SakataMoriLab GNN勉強会第一回資料ttt_miura
 
ZDD基礎
ZDD基礎ZDD基礎
ZDD基礎reew2n
 
TransPose: Towards Explainable Human Pose Estimation by Transformer
TransPose: Towards Explainable Human Pose Estimation by TransformerTransPose: Towards Explainable Human Pose Estimation by Transformer
TransPose: Towards Explainable Human Pose Estimation by TransformerYasutomo Kawanishi
 
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep AutoencodersKDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep AutoencodersSatoshi Hara
 
グラフデータ分析 入門編
グラフデータ分析 入門編グラフデータ分析 入門編
グラフデータ分析 入門編順也 山口
 

What's hot (20)

画像をテキストで検索したい!(OpenAI CLIP) - VRC-LT #15
画像をテキストで検索したい!(OpenAI CLIP) - VRC-LT #15画像をテキストで検索したい!(OpenAI CLIP) - VRC-LT #15
画像をテキストで検索したい!(OpenAI CLIP) - VRC-LT #15
 
[丸ノ内アナリティクスバンビーノ#23]データドリブン施策によるサービス品質向上の取り組み
[丸ノ内アナリティクスバンビーノ#23]データドリブン施策によるサービス品質向上の取り組み[丸ノ内アナリティクスバンビーノ#23]データドリブン施策によるサービス品質向上の取り組み
[丸ノ内アナリティクスバンビーノ#23]データドリブン施策によるサービス品質向上の取り組み
 
Superpixel Sampling Networks
Superpixel Sampling NetworksSuperpixel Sampling Networks
Superpixel Sampling Networks
 
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 
機械学習 入門
機械学習 入門機械学習 入門
機械学習 入門
 
【DL輪読会】Transporters with Visual Foresight for Solving Unseen Rearrangement Tasks
【DL輪読会】Transporters with Visual Foresight for Solving Unseen Rearrangement Tasks【DL輪読会】Transporters with Visual Foresight for Solving Unseen Rearrangement Tasks
【DL輪読会】Transporters with Visual Foresight for Solving Unseen Rearrangement Tasks
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
 
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
 
決定木・回帰木に基づくアンサンブル学習の最近
決定木・回帰木に基づくアンサンブル学習の最近決定木・回帰木に基づくアンサンブル学習の最近
決定木・回帰木に基づくアンサンブル学習の最近
 
ICML 2020 最適輸送まとめ
ICML 2020 最適輸送まとめICML 2020 最適輸送まとめ
ICML 2020 最適輸送まとめ
 
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
 
深層学習とTensorFlow入門
深層学習とTensorFlow入門深層学習とTensorFlow入門
深層学習とTensorFlow入門
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
 
BERT分類ワークショップ.pptx
BERT分類ワークショップ.pptxBERT分類ワークショップ.pptx
BERT分類ワークショップ.pptx
 
SakataMoriLab GNN勉強会第一回資料
SakataMoriLab GNN勉強会第一回資料SakataMoriLab GNN勉強会第一回資料
SakataMoriLab GNN勉強会第一回資料
 
ZDD基礎
ZDD基礎ZDD基礎
ZDD基礎
 
TransPose: Towards Explainable Human Pose Estimation by Transformer
TransPose: Towards Explainable Human Pose Estimation by TransformerTransPose: Towards Explainable Human Pose Estimation by Transformer
TransPose: Towards Explainable Human Pose Estimation by Transformer
 
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep AutoencodersKDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
 
グラフデータ分析 入門編
グラフデータ分析 入門編グラフデータ分析 入門編
グラフデータ分析 入門編
 

More from Teruyuki Sakaue

実務と論文で学ぶジョブレコメンデーション最前線2022
実務と論文で学ぶジョブレコメンデーション最前線2022実務と論文で学ぶジョブレコメンデーション最前線2022
実務と論文で学ぶジョブレコメンデーション最前線2022Teruyuki Sakaue
 
[Music×Analytics]プロの音に近づくための研究と練習
[Music×Analytics]プロの音に近づくための研究と練習[Music×Analytics]プロの音に近づくための研究と練習
[Music×Analytics]プロの音に近づくための研究と練習Teruyuki Sakaue
 
[DSO] Machine Learning Seminar Vol.8 Chapter 9
[DSO] Machine Learning Seminar Vol.8 Chapter 9[DSO] Machine Learning Seminar Vol.8 Chapter 9
[DSO] Machine Learning Seminar Vol.8 Chapter 9Teruyuki Sakaue
 
データ分析ランチセッション#24 OSSのAutoML~TPOTについて
データ分析ランチセッション#24 OSSのAutoML~TPOTについてデータ分析ランチセッション#24 OSSのAutoML~TPOTについて
データ分析ランチセッション#24 OSSのAutoML~TPOTについてTeruyuki Sakaue
 
[第11回]データ分析ランチセッション - モダンな機械学習データパイプラインKedroを触ってみる
[第11回]データ分析ランチセッション - モダンな機械学習データパイプラインKedroを触ってみる[第11回]データ分析ランチセッション - モダンな機械学習データパイプラインKedroを触ってみる
[第11回]データ分析ランチセッション - モダンな機械学習データパイプラインKedroを触ってみるTeruyuki Sakaue
 
[DSO] Machine Learning Seminar Vol.2 Chapter 3
[DSO] Machine Learning Seminar Vol.2 Chapter 3[DSO] Machine Learning Seminar Vol.2 Chapter 3
[DSO] Machine Learning Seminar Vol.2 Chapter 3Teruyuki Sakaue
 
[第6回]データ分析ランチセッション - Camphrでモダンな自然言語処理
[第6回]データ分析ランチセッション - Camphrでモダンな自然言語処理[第6回]データ分析ランチセッション - Camphrでモダンな自然言語処理
[第6回]データ分析ランチセッション - Camphrでモダンな自然言語処理Teruyuki Sakaue
 
[DSO] Machine Learning Seminar Vol.1 Chapter 1 and 2
[DSO] Machine Learning Seminar Vol.1 Chapter 1 and 2[DSO] Machine Learning Seminar Vol.1 Chapter 1 and 2
[DSO] Machine Learning Seminar Vol.1 Chapter 1 and 2Teruyuki Sakaue
 
地理データを集め、可視化し分析することが簡単にできるプログラミング言語について @ BIT VALLEY -INSIDE- Vol.16
地理データを集め、可視化し分析することが簡単にできるプログラミング言語について @ BIT VALLEY -INSIDE- Vol.16地理データを集め、可視化し分析することが簡単にできるプログラミング言語について @ BIT VALLEY -INSIDE- Vol.16
地理データを集め、可視化し分析することが簡単にできるプログラミング言語について @ BIT VALLEY -INSIDE- Vol.16Teruyuki Sakaue
 
[第1回]データ分析ランチセッション ~ Qiita Advent Calendar2019から得た情報10選
[第1回]データ分析ランチセッション ~ Qiita Advent Calendar2019から得た情報10選[第1回]データ分析ランチセッション ~ Qiita Advent Calendar2019から得た情報10選
[第1回]データ分析ランチセッション ~ Qiita Advent Calendar2019から得た情報10選Teruyuki Sakaue
 
流行りの分散表現を用いた文書分類について Netadashi Meetup 7
流行りの分散表現を用いた文書分類について Netadashi Meetup 7流行りの分散表現を用いた文書分類について Netadashi Meetup 7
流行りの分散表現を用いた文書分類について Netadashi Meetup 7Teruyuki Sakaue
 
HRビジネスにおけるデータサイエンスの適用 @ BIT VALLEY -INSIDE- Vol.1
HRビジネスにおけるデータサイエンスの適用 @ BIT VALLEY -INSIDE- Vol.1HRビジネスにおけるデータサイエンスの適用 @ BIT VALLEY -INSIDE- Vol.1
HRビジネスにおけるデータサイエンスの適用 @ BIT VALLEY -INSIDE- Vol.1Teruyuki Sakaue
 
Marketing×Python/Rで頑張れる事例16本ノック
Marketing×Python/Rで頑張れる事例16本ノックMarketing×Python/Rで頑張れる事例16本ノック
Marketing×Python/Rで頑張れる事例16本ノックTeruyuki Sakaue
 
機械学習による積極的失業〜オウンドメディアの訪問予測
機械学習による積極的失業〜オウンドメディアの訪問予測機械学習による積極的失業〜オウンドメディアの訪問予測
機械学習による積極的失業〜オウンドメディアの訪問予測Teruyuki Sakaue
 

More from Teruyuki Sakaue (14)

実務と論文で学ぶジョブレコメンデーション最前線2022
実務と論文で学ぶジョブレコメンデーション最前線2022実務と論文で学ぶジョブレコメンデーション最前線2022
実務と論文で学ぶジョブレコメンデーション最前線2022
 
[Music×Analytics]プロの音に近づくための研究と練習
[Music×Analytics]プロの音に近づくための研究と練習[Music×Analytics]プロの音に近づくための研究と練習
[Music×Analytics]プロの音に近づくための研究と練習
 
[DSO] Machine Learning Seminar Vol.8 Chapter 9
[DSO] Machine Learning Seminar Vol.8 Chapter 9[DSO] Machine Learning Seminar Vol.8 Chapter 9
[DSO] Machine Learning Seminar Vol.8 Chapter 9
 
データ分析ランチセッション#24 OSSのAutoML~TPOTについて
データ分析ランチセッション#24 OSSのAutoML~TPOTについてデータ分析ランチセッション#24 OSSのAutoML~TPOTについて
データ分析ランチセッション#24 OSSのAutoML~TPOTについて
 
[第11回]データ分析ランチセッション - モダンな機械学習データパイプラインKedroを触ってみる
[第11回]データ分析ランチセッション - モダンな機械学習データパイプラインKedroを触ってみる[第11回]データ分析ランチセッション - モダンな機械学習データパイプラインKedroを触ってみる
[第11回]データ分析ランチセッション - モダンな機械学習データパイプラインKedroを触ってみる
 
[DSO] Machine Learning Seminar Vol.2 Chapter 3
[DSO] Machine Learning Seminar Vol.2 Chapter 3[DSO] Machine Learning Seminar Vol.2 Chapter 3
[DSO] Machine Learning Seminar Vol.2 Chapter 3
 
[第6回]データ分析ランチセッション - Camphrでモダンな自然言語処理
[第6回]データ分析ランチセッション - Camphrでモダンな自然言語処理[第6回]データ分析ランチセッション - Camphrでモダンな自然言語処理
[第6回]データ分析ランチセッション - Camphrでモダンな自然言語処理
 
[DSO] Machine Learning Seminar Vol.1 Chapter 1 and 2
[DSO] Machine Learning Seminar Vol.1 Chapter 1 and 2[DSO] Machine Learning Seminar Vol.1 Chapter 1 and 2
[DSO] Machine Learning Seminar Vol.1 Chapter 1 and 2
 
地理データを集め、可視化し分析することが簡単にできるプログラミング言語について @ BIT VALLEY -INSIDE- Vol.16
地理データを集め、可視化し分析することが簡単にできるプログラミング言語について @ BIT VALLEY -INSIDE- Vol.16地理データを集め、可視化し分析することが簡単にできるプログラミング言語について @ BIT VALLEY -INSIDE- Vol.16
地理データを集め、可視化し分析することが簡単にできるプログラミング言語について @ BIT VALLEY -INSIDE- Vol.16
 
[第1回]データ分析ランチセッション ~ Qiita Advent Calendar2019から得た情報10選
[第1回]データ分析ランチセッション ~ Qiita Advent Calendar2019から得た情報10選[第1回]データ分析ランチセッション ~ Qiita Advent Calendar2019から得た情報10選
[第1回]データ分析ランチセッション ~ Qiita Advent Calendar2019から得た情報10選
 
流行りの分散表現を用いた文書分類について Netadashi Meetup 7
流行りの分散表現を用いた文書分類について Netadashi Meetup 7流行りの分散表現を用いた文書分類について Netadashi Meetup 7
流行りの分散表現を用いた文書分類について Netadashi Meetup 7
 
HRビジネスにおけるデータサイエンスの適用 @ BIT VALLEY -INSIDE- Vol.1
HRビジネスにおけるデータサイエンスの適用 @ BIT VALLEY -INSIDE- Vol.1HRビジネスにおけるデータサイエンスの適用 @ BIT VALLEY -INSIDE- Vol.1
HRビジネスにおけるデータサイエンスの適用 @ BIT VALLEY -INSIDE- Vol.1
 
Marketing×Python/Rで頑張れる事例16本ノック
Marketing×Python/Rで頑張れる事例16本ノックMarketing×Python/Rで頑張れる事例16本ノック
Marketing×Python/Rで頑張れる事例16本ノック
 
機械学習による積極的失業〜オウンドメディアの訪問予測
機械学習による積極的失業〜オウンドメディアの訪問予測機械学習による積極的失業〜オウンドメディアの訪問予測
機械学習による積極的失業〜オウンドメディアの訪問予測
 

警察庁オープンデータで交通事故の世界にDeepDive!