SlideShare a Scribd company logo
1 of 23
Ohsawa Lab,
Department of Systems Innovation,
School of Engineering,
The University of Tokyo
Data Jacket
How to Register
Contents
1. Data Jacket (DJ)
2. Examples of DJs
3. How to Resister your data as DJ
4. References
Process of
Innovators Marketplace on Data Jackets (IMDJ)
Action Planning (AP)
• Registering information about data as Data
Jackets (DJs)
• Practicing gamified workshop and
creating solutions combining Data
Jackets
• Generating Strategic Scenarios and
Analysis Scenarios for actions
DJ Entry
Innovators Marketplace on
Data Jackets (IMDJ)
Evaluation • Evaluating the feasibility of
scenarios
PURPOSE: the development of processes to support creations of new businesses
and the creative decision making, utilizing and exchanging data through the
cooperation between/within organizations
Data Jacket (DJ)
• Data Jacket (DJ) is a structured summary of data described in natural language.
• DJ has been developed as a technique for sharing information about data and for
considering the potential value of datasets, keeping privacy of the data itself.
• We can understand the outlines, variables, formats of data referring to the description
on DJs.
• Even if data itself is not open, by publishing DJ, data could be recognizable and
understandable not only for humans, but also for machines.
• Published DJs enable data owners, data users and data analysts to understand the
contents of each dataset, and start to communicate about the utilization of data.
(Ohsawa, Y. et al., 2013)
POS data of the
supermarket in Tokyo
describing
in DJ
title: POS data of the supermarket in Tokyo
variable label: customer ID, date, brand name
type: int, string
format: RDB
sharing policy: in particular conditions
Examples of DJs
Visualizing Connections of DJs
Visualizing Connections of DJs
• In the process of IMDJ, data visualization
tools reveal possible combinations of DJs
and support participants to discover latent
combinations of datasets.
• KeyGraph is an example of a visualized
map (square nodes represent DJs, red
nodes are the keywords included in the
outlines of DJs, and blue nodes are the the
keywords from variable labels.)
• Data owners communicate their datasets as
DJs, and participants of IMDJ (including
data owners, users, and analysts) create
solutions for solving data users’ problems
stated as requirements.
• Data owners are able to learn how to use
their own data from the possible
combination of DJs proposed by data
analysts, and users are able to learn how
their requirements can be satisfied with
proposals.
• Participants, who learn the expected utility
of data, start to negotiate for data exchange
or buying/selling to create new businesses.
15 minutes for DJ Registration
1~2 min.
1~2 min.
7~10 min.
EASY !!
How to Register your data as DJ
(Step1)
Visit DJ Site (https://sites.google.com/site/datajackets/).
How to Register your data as DJ
(Step2)
Click the icon for registering DJ.
How to Register your data as DJ
(Step3)
Select your favorite language (English or Japanese).
How to Register your data as DJ
(Step3-1)
Enter your information (your name and valid e-mail address)
Personal information will be strictly secured.
This information is only used to manage DJs.
How to Register your data as DJ
(Step3-2)
Enter the information about your data.
Title of data (required)
Outline of data (optional)
How to Register your data as DJ
(Step3-3)
Enter the information about your data.
Where are the data about? (optional)
How were the data collected/created? (optional)
How to Register your data as DJ
(Step3-4)
Enter the information about your data.
Sharing policy of data (optional)
Other:
How to Register your data as DJ
(Step3-5)
Enter the information about your data.
Type of data (optional)
Other:
How to Register your data as DJ
(Step3-6)
Enter the information about your data.
Format of data (optional)
Other:
How to Register your data as DJ
(Step3-7)
Enter the information about your data.
Variable labels of data (optional)
Description of variable labels is optional, BUT
this is one of the most important attributes of
data.
How to Register your data as DJ
(Step3-8)
Enter the information about your data.
Analysis/simulation process of data (optional)
Outcome of analysis process (optional)
How to Register your data as DJ
(Step3-9)
Enter the information about your data.
Anticipation for analyses (optional)
How to Register your data as DJ
(Step3-10)
Enter the information about your data.
Comments (optional)
What kind of data do you want? (optional)
How to Register your data as DJ
(Step4)
Select the range of publication of your DJs.
Selecting “Public” is expected to show the
information about your data to all the stakeholders in
the Market of Data.
Other:
References
1. Y. Ohsawa, H. Kido, T. Hayashi, and C. Liu, “Data Jackets for Synthesizing Values in the Market of Data,” 17th
International Conference in Knowledge Based and Intelligent Information and Engineering Systems, Procedia
Computer Science Vol.22, pp.709-716, 2013.
2. Y. Ohsawa, C. Liu, Y. Suda, and H. Kido, “Innovators Marketplace on Data Jackets for Externalizing the Value of
Data via Stakeholders’ Requirement Communication,” AAAI 2014 Spring Symposium on Big data becomes
personal: Knowledge into Meaning, AAAI Technical Report, pp.45-50, 2014.
3. Y. Ohsawa, H. Kido, T. Hayashi, C. Liu, and K. Komoda, “Innovators Marketplace on Data Jackets, for Valuating,
Sharing, and Synthesizing Data,” Knowledge-based Information Systems in Practice, Smart Innovation, Systems
and Technologies, Tweedale, W.J., Jain, C.L., Watada., J., and Howlett, R. (eds), Springer International
Publishing, Vol.30, pp.83-97, 2015.
4. Y. Ohsawa, C. Liu, T. Hayashi, and H. Kido, “Data Jackets for Externalizing Use Value of Hidden Datasets,” 18th
International Conference in Knowledge Based and Intelligent Information and Engineering Systems, Procedia
Computer Science, Vol.35, pp.946-953, 2014.

More Related Content

Similar to Data Jacket How to Register Ver.01

Introduction to Business and Data Analysis Undergraduate.pdf
Introduction to Business and Data Analysis Undergraduate.pdfIntroduction to Business and Data Analysis Undergraduate.pdf
Introduction to Business and Data Analysis Undergraduate.pdfAbdulrahimShaibuIssa
 
Kp-Data Analytics-ts.pptx
Kp-Data Analytics-ts.pptxKp-Data Analytics-ts.pptx
Kp-Data Analytics-ts.pptxCloudBusiness2
 
Big data analytics, research report
Big data analytics, research reportBig data analytics, research report
Big data analytics, research reportJULIO GONZALEZ SANZ
 
Big Data Analytics Research Report
Big Data Analytics Research ReportBig Data Analytics Research Report
Big Data Analytics Research ReportIla Group
 
Technical Documentation 101 for Data Engineers.pdf
Technical Documentation 101 for Data Engineers.pdfTechnical Documentation 101 for Data Engineers.pdf
Technical Documentation 101 for Data Engineers.pdfShristi Shrestha
 
Business Intelligence and Analytics Unit-2 part-A .pptx
Business Intelligence and Analytics Unit-2 part-A .pptxBusiness Intelligence and Analytics Unit-2 part-A .pptx
Business Intelligence and Analytics Unit-2 part-A .pptxRupaRani28
 
Unit i big data introduction
Unit  i big data introductionUnit  i big data introduction
Unit i big data introductionSujaMaryD
 
Introduction to data science
Introduction to data scienceIntroduction to data science
Introduction to data scienceSampath Kumar
 
Welcome to Data Science
Welcome to Data ScienceWelcome to Data Science
Welcome to Data ScienceNyraSehgal
 
Canadian Experts Discuss Modern Data Stacks and Cloud Computing for 5 Years o...
Canadian Experts Discuss Modern Data Stacks and Cloud Computing for 5 Years o...Canadian Experts Discuss Modern Data Stacks and Cloud Computing for 5 Years o...
Canadian Experts Discuss Modern Data Stacks and Cloud Computing for 5 Years o...Daniel Zivkovic
 
Operationalizing Data Science St. Louis Big Data IDEA
Operationalizing Data Science St. Louis Big Data IDEAOperationalizing Data Science St. Louis Big Data IDEA
Operationalizing Data Science St. Louis Big Data IDEAAdam Doyle
 

Similar to Data Jacket How to Register Ver.01 (20)

Introduction to Business and Data Analysis Undergraduate.pdf
Introduction to Business and Data Analysis Undergraduate.pdfIntroduction to Business and Data Analysis Undergraduate.pdf
Introduction to Business and Data Analysis Undergraduate.pdf
 
Analysis and design tool
Analysis and design toolAnalysis and design tool
Analysis and design tool
 
Kp-Data Analytics-ts.pptx
Kp-Data Analytics-ts.pptxKp-Data Analytics-ts.pptx
Kp-Data Analytics-ts.pptx
 
Open Data Canvas 0.1
Open Data Canvas 0.1Open Data Canvas 0.1
Open Data Canvas 0.1
 
Data Science Course.pdf
Data Science Course.pdfData Science Course.pdf
Data Science Course.pdf
 
Mis module ii
Mis module iiMis module ii
Mis module ii
 
Bigdata
Bigdata Bigdata
Bigdata
 
Bigdata notes
Bigdata notesBigdata notes
Bigdata notes
 
365 Data Science
365 Data Science365 Data Science
365 Data Science
 
Big data analytics, research report
Big data analytics, research reportBig data analytics, research report
Big data analytics, research report
 
Big Data Analytics Research Report
Big Data Analytics Research ReportBig Data Analytics Research Report
Big Data Analytics Research Report
 
Technical Documentation 101 for Data Engineers.pdf
Technical Documentation 101 for Data Engineers.pdfTechnical Documentation 101 for Data Engineers.pdf
Technical Documentation 101 for Data Engineers.pdf
 
Business Intelligence and Analytics Unit-2 part-A .pptx
Business Intelligence and Analytics Unit-2 part-A .pptxBusiness Intelligence and Analytics Unit-2 part-A .pptx
Business Intelligence and Analytics Unit-2 part-A .pptx
 
What is Data?
What is Data?What is Data?
What is Data?
 
Unit i big data introduction
Unit  i big data introductionUnit  i big data introduction
Unit i big data introduction
 
Introduction to data science
Introduction to data scienceIntroduction to data science
Introduction to data science
 
Welcome to Data Science
Welcome to Data ScienceWelcome to Data Science
Welcome to Data Science
 
Unit 2
Unit 2Unit 2
Unit 2
 
Canadian Experts Discuss Modern Data Stacks and Cloud Computing for 5 Years o...
Canadian Experts Discuss Modern Data Stacks and Cloud Computing for 5 Years o...Canadian Experts Discuss Modern Data Stacks and Cloud Computing for 5 Years o...
Canadian Experts Discuss Modern Data Stacks and Cloud Computing for 5 Years o...
 
Operationalizing Data Science St. Louis Big Data IDEA
Operationalizing Data Science St. Louis Big Data IDEAOperationalizing Data Science St. Louis Big Data IDEA
Operationalizing Data Science St. Louis Big Data IDEA
 

More from Teruaki Hayashi

Web IMDJ利用マニュアル
Web IMDJ利用マニュアルWeb IMDJ利用マニュアル
Web IMDJ利用マニュアルTeruaki Hayashi
 
データジャケット入力方法 Ver.2
データジャケット入力方法 Ver.2データジャケット入力方法 Ver.2
データジャケット入力方法 Ver.2Teruaki Hayashi
 
データジャケット入力方法
データジャケット入力方法データジャケット入力方法
データジャケット入力方法Teruaki Hayashi
 
Innovators Marketplace on Data Jackets実施方法概説
Innovators Marketplace on Data Jackets実施方法概説Innovators Marketplace on Data Jackets実施方法概説
Innovators Marketplace on Data Jackets実施方法概説Teruaki Hayashi
 
アクション・プランニング(Action Planning)でデータ利活用シナリオを作る
アクション・プランニング(Action Planning)でデータ利活用シナリオを作るアクション・プランニング(Action Planning)でデータ利活用シナリオを作る
アクション・プランニング(Action Planning)でデータ利活用シナリオを作るTeruaki Hayashi
 
チャンス発見とバングラデシュから学ぶシナリオ・デザイン
チャンス発見とバングラデシュから学ぶシナリオ・デザインチャンス発見とバングラデシュから学ぶシナリオ・デザイン
チャンス発見とバングラデシュから学ぶシナリオ・デザインTeruaki Hayashi
 

More from Teruaki Hayashi (6)

Web IMDJ利用マニュアル
Web IMDJ利用マニュアルWeb IMDJ利用マニュアル
Web IMDJ利用マニュアル
 
データジャケット入力方法 Ver.2
データジャケット入力方法 Ver.2データジャケット入力方法 Ver.2
データジャケット入力方法 Ver.2
 
データジャケット入力方法
データジャケット入力方法データジャケット入力方法
データジャケット入力方法
 
Innovators Marketplace on Data Jackets実施方法概説
Innovators Marketplace on Data Jackets実施方法概説Innovators Marketplace on Data Jackets実施方法概説
Innovators Marketplace on Data Jackets実施方法概説
 
アクション・プランニング(Action Planning)でデータ利活用シナリオを作る
アクション・プランニング(Action Planning)でデータ利活用シナリオを作るアクション・プランニング(Action Planning)でデータ利活用シナリオを作る
アクション・プランニング(Action Planning)でデータ利活用シナリオを作る
 
チャンス発見とバングラデシュから学ぶシナリオ・デザイン
チャンス発見とバングラデシュから学ぶシナリオ・デザインチャンス発見とバングラデシュから学ぶシナリオ・デザイン
チャンス発見とバングラデシュから学ぶシナリオ・デザイン
 

Recently uploaded

National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfRajuKanojiya4
 
Internship PPT ukai thermal power station .pptx
Internship PPT ukai thermal power station .pptxInternship PPT ukai thermal power station .pptx
Internship PPT ukai thermal power station .pptxmalikavita731
 
Malware Detection By Machine Learning Presentation.pptx
Malware Detection By Machine Learning  Presentation.pptxMalware Detection By Machine Learning  Presentation.pptx
Malware Detection By Machine Learning Presentation.pptxalishapatidar2021
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMM
chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMMchpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMM
chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMMNanaAgyeman13
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 

Recently uploaded (20)

National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdf
 
Internship PPT ukai thermal power station .pptx
Internship PPT ukai thermal power station .pptxInternship PPT ukai thermal power station .pptx
Internship PPT ukai thermal power station .pptx
 
Malware Detection By Machine Learning Presentation.pptx
Malware Detection By Machine Learning  Presentation.pptxMalware Detection By Machine Learning  Presentation.pptx
Malware Detection By Machine Learning Presentation.pptx
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMM
chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMMchpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMM
chpater16.pptxMMMMMMMMMMMMMMMMMMMMMMMMMMM
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 

Data Jacket How to Register Ver.01

  • 1. Ohsawa Lab, Department of Systems Innovation, School of Engineering, The University of Tokyo Data Jacket How to Register
  • 2. Contents 1. Data Jacket (DJ) 2. Examples of DJs 3. How to Resister your data as DJ 4. References
  • 3. Process of Innovators Marketplace on Data Jackets (IMDJ) Action Planning (AP) • Registering information about data as Data Jackets (DJs) • Practicing gamified workshop and creating solutions combining Data Jackets • Generating Strategic Scenarios and Analysis Scenarios for actions DJ Entry Innovators Marketplace on Data Jackets (IMDJ) Evaluation • Evaluating the feasibility of scenarios PURPOSE: the development of processes to support creations of new businesses and the creative decision making, utilizing and exchanging data through the cooperation between/within organizations
  • 4. Data Jacket (DJ) • Data Jacket (DJ) is a structured summary of data described in natural language. • DJ has been developed as a technique for sharing information about data and for considering the potential value of datasets, keeping privacy of the data itself. • We can understand the outlines, variables, formats of data referring to the description on DJs. • Even if data itself is not open, by publishing DJ, data could be recognizable and understandable not only for humans, but also for machines. • Published DJs enable data owners, data users and data analysts to understand the contents of each dataset, and start to communicate about the utilization of data. (Ohsawa, Y. et al., 2013) POS data of the supermarket in Tokyo describing in DJ title: POS data of the supermarket in Tokyo variable label: customer ID, date, brand name type: int, string format: RDB sharing policy: in particular conditions
  • 7. Visualizing Connections of DJs • In the process of IMDJ, data visualization tools reveal possible combinations of DJs and support participants to discover latent combinations of datasets. • KeyGraph is an example of a visualized map (square nodes represent DJs, red nodes are the keywords included in the outlines of DJs, and blue nodes are the the keywords from variable labels.) • Data owners communicate their datasets as DJs, and participants of IMDJ (including data owners, users, and analysts) create solutions for solving data users’ problems stated as requirements. • Data owners are able to learn how to use their own data from the possible combination of DJs proposed by data analysts, and users are able to learn how their requirements can be satisfied with proposals. • Participants, who learn the expected utility of data, start to negotiate for data exchange or buying/selling to create new businesses.
  • 8. 15 minutes for DJ Registration 1~2 min. 1~2 min. 7~10 min. EASY !!
  • 9. How to Register your data as DJ (Step1) Visit DJ Site (https://sites.google.com/site/datajackets/).
  • 10. How to Register your data as DJ (Step2) Click the icon for registering DJ.
  • 11. How to Register your data as DJ (Step3) Select your favorite language (English or Japanese).
  • 12. How to Register your data as DJ (Step3-1) Enter your information (your name and valid e-mail address) Personal information will be strictly secured. This information is only used to manage DJs.
  • 13. How to Register your data as DJ (Step3-2) Enter the information about your data. Title of data (required) Outline of data (optional)
  • 14. How to Register your data as DJ (Step3-3) Enter the information about your data. Where are the data about? (optional) How were the data collected/created? (optional)
  • 15. How to Register your data as DJ (Step3-4) Enter the information about your data. Sharing policy of data (optional) Other:
  • 16. How to Register your data as DJ (Step3-5) Enter the information about your data. Type of data (optional) Other:
  • 17. How to Register your data as DJ (Step3-6) Enter the information about your data. Format of data (optional) Other:
  • 18. How to Register your data as DJ (Step3-7) Enter the information about your data. Variable labels of data (optional) Description of variable labels is optional, BUT this is one of the most important attributes of data.
  • 19. How to Register your data as DJ (Step3-8) Enter the information about your data. Analysis/simulation process of data (optional) Outcome of analysis process (optional)
  • 20. How to Register your data as DJ (Step3-9) Enter the information about your data. Anticipation for analyses (optional)
  • 21. How to Register your data as DJ (Step3-10) Enter the information about your data. Comments (optional) What kind of data do you want? (optional)
  • 22. How to Register your data as DJ (Step4) Select the range of publication of your DJs. Selecting “Public” is expected to show the information about your data to all the stakeholders in the Market of Data. Other:
  • 23. References 1. Y. Ohsawa, H. Kido, T. Hayashi, and C. Liu, “Data Jackets for Synthesizing Values in the Market of Data,” 17th International Conference in Knowledge Based and Intelligent Information and Engineering Systems, Procedia Computer Science Vol.22, pp.709-716, 2013. 2. Y. Ohsawa, C. Liu, Y. Suda, and H. Kido, “Innovators Marketplace on Data Jackets for Externalizing the Value of Data via Stakeholders’ Requirement Communication,” AAAI 2014 Spring Symposium on Big data becomes personal: Knowledge into Meaning, AAAI Technical Report, pp.45-50, 2014. 3. Y. Ohsawa, H. Kido, T. Hayashi, C. Liu, and K. Komoda, “Innovators Marketplace on Data Jackets, for Valuating, Sharing, and Synthesizing Data,” Knowledge-based Information Systems in Practice, Smart Innovation, Systems and Technologies, Tweedale, W.J., Jain, C.L., Watada., J., and Howlett, R. (eds), Springer International Publishing, Vol.30, pp.83-97, 2015. 4. Y. Ohsawa, C. Liu, T. Hayashi, and H. Kido, “Data Jackets for Externalizing Use Value of Hidden Datasets,” 18th International Conference in Knowledge Based and Intelligent Information and Engineering Systems, Procedia Computer Science, Vol.35, pp.946-953, 2014.

Editor's Notes

  1. http://www.panda.sys.t.u-tokyo.ac.jp/hayashi/djs/djs4ddi/
  2. データには名前が付与されている。データのタイトルとは、データの存在を一意に決定するラベルに相当する。DJとして登録されているタイトルには、例えば「金融システムレポート」、「火災実験データベース」などがある。しかし、タイトルだけでは、人間の同姓同名のようにデータを一意に定めることができない場合がある。そのため、DJではデータのタイトル以外に概要や含まれる変数ラベルなどを収集している。
  3. データには名前が付与されている。データのタイトルとは、データの存在を一意に決定するラベルに相当する。DJとして登録されているタイトルには、例えば「金融システムレポート」、「火災実験データベース」などがある。しかし、タイトルだけでは、人間の同姓同名のようにデータを一意に定めることができない場合がある。そのため、DJではデータのタイトル以外に概要や含まれる変数ラベルなどを収集している。
  4. データには名前が付与されている。データのタイトルとは、データの存在を一意に決定するラベルに相当する。DJとして登録されているタイトルには、例えば「金融システムレポート」、「火災実験データベース」などがある。しかし、タイトルだけでは、人間の同姓同名のようにデータを一意に定めることができない場合がある。そのため、DJではデータのタイトル以外に概要や含まれる変数ラベルなどを収集している。
  5. データには名前が付与されている。データのタイトルとは、データの存在を一意に決定するラベルに相当する。DJとして登録されているタイトルには、例えば「金融システムレポート」、「火災実験データベース」などがある。しかし、タイトルだけでは、人間の同姓同名のようにデータを一意に定めることができない場合がある。そのため、DJではデータのタイトル以外に概要や含まれる変数ラベルなどを収集している。
  6. データには名前が付与されている。データのタイトルとは、データの存在を一意に決定するラベルに相当する。DJとして登録されているタイトルには、例えば「金融システムレポート」、「火災実験データベース」などがある。しかし、タイトルだけでは、人間の同姓同名のようにデータを一意に定めることができない場合がある。そのため、DJではデータのタイトル以外に概要や含まれる変数ラベルなどを収集している。
  7. データには名前が付与されている。データのタイトルとは、データの存在を一意に決定するラベルに相当する。DJとして登録されているタイトルには、例えば「金融システムレポート」、「火災実験データベース」などがある。しかし、タイトルだけでは、人間の同姓同名のようにデータを一意に定めることができない場合がある。そのため、DJではデータのタイトル以外に概要や含まれる変数ラベルなどを収集している。
  8. データには名前が付与されている。データのタイトルとは、データの存在を一意に決定するラベルに相当する。DJとして登録されているタイトルには、例えば「金融システムレポート」、「火災実験データベース」などがある。しかし、タイトルだけでは、人間の同姓同名のようにデータを一意に定めることができない場合がある。そのため、DJではデータのタイトル以外に概要や含まれる変数ラベルなどを収集している。
  9. データには名前が付与されている。データのタイトルとは、データの存在を一意に決定するラベルに相当する。DJとして登録されているタイトルには、例えば「金融システムレポート」、「火災実験データベース」などがある。しかし、タイトルだけでは、人間の同姓同名のようにデータを一意に定めることができない場合がある。そのため、DJではデータのタイトル以外に概要や含まれる変数ラベルなどを収集している。
  10. データには名前が付与されている。データのタイトルとは、データの存在を一意に決定するラベルに相当する。DJとして登録されているタイトルには、例えば「金融システムレポート」、「火災実験データベース」などがある。しかし、タイトルだけでは、人間の同姓同名のようにデータを一意に定めることができない場合がある。そのため、DJではデータのタイトル以外に概要や含まれる変数ラベルなどを収集している。
  11. データには名前が付与されている。データのタイトルとは、データの存在を一意に決定するラベルに相当する。DJとして登録されているタイトルには、例えば「金融システムレポート」、「火災実験データベース」などがある。しかし、タイトルだけでは、人間の同姓同名のようにデータを一意に定めることができない場合がある。そのため、DJではデータのタイトル以外に概要や含まれる変数ラベルなどを収集している。