SlideShare a Scribd company logo
1 of 32
PROJECTILE MOTION
High School Physics
Part 1. Part 2.
Free powerpoints at http://www.worldofteaching.com
Introduction
 Projectile Motion:
Motion through the air without a propulsion
 Examples:
Part 1.
Motion of Objects Projected
Horizontally
v0
x
y
x
y
x
y
x
y
x
y
x
y
•Motion is accelerated
•Acceleration is constant,
and downward
• a = g = -9.81m/s2
•The horizontal (x)
component of velocity is
constant
•The horizontal and vertical
motions are independent of
each other, but they have a
common time
g = -9.81m/s2
ANALYSIS OF MOTION
ASSUMPTIONS:
• x-direction (horizontal): uniform motion
• y-direction (vertical): accelerated motion
• no air resistance
QUESTIONS:
• What is the trajectory?
• What is the total time of the motion?
• What is the horizontal range?
• What is the final velocity?
x
y
0
Frame of reference:
h
v0
Equations of motion:
X
Uniform m.
Y
Accel. m.
ACCL. ax = 0 ay = g = -9.81
m/s2
VELC. vx = v0 vy = g t
DSPL. x = v0 t y = h + ½ g t2
g
Trajectory
x = v0 t
y = h + ½ g t2
Eliminate time, t
t = x/v0
y = h + ½ g (x/v0)2
y = h + ½ (g/v0
2) x2
y = ½ (g/v0
2) x2 + h
y
x
h
Parabola, open down
v01
v02 > v01
Total Time, Δt
y = h + ½ g t2
final y = 0 y
x
h
ti =0
tf =Δt
0 = h + ½ g (Δt)2
Solve for Δt:
Δt = √ 2h/(-g)
Δt = √ 2h/(9.81ms-2)
Total time of motion depends
only on the initial height, h
Δt = tf - ti
Horizontal Range, Δx
final y = 0, time is
the total time Δt
y
x
h
Δt = √ 2h/(-g)
Δx = v0 √ 2h/(-g)
Horizontal range depends on the
initial height, h, and the initial
velocity, v0
Δx
x = v0 t
Δx = v0 Δt
VELOCITY
v
vx = v0
vy = g t
v = √vx
2 + vy
2
= √v0
2+g2t2
tg Θ = v
y
/ v
x
= g t / v
0
Θ
FINAL VELOCITY
v
vx = v0
vy = g t
v = √vx
2 + vy
2
v = √v0
2+g2(2h /(-g))
v = √ v0
2+ 2h(-g)
Θ tg Θ = g Δt / v0
= -(-g)√2h/(-g) / v0
= -√2h(-g) / v0
Θ is negative
(below the
horizontal line)
Δt = √ 2h/(-g)
HORIZONTAL THROW - Summary
Trajectory Half -parabola, open
down
Total time Δt = √ 2h/(-g)
Horizontal Range Δx = v0 √ 2h/(-g)
Final Velocity v = √ v0
2+ 2h(-g)
tg Θ = -√2h(-g) / v0
h – initial height, v0 – initial horizontal velocity, g = -9.81m/s2
Part 2.
Motion of objects projected at an
angle
vi
x
y
θ
vix
viy
Initial velocity: vi = vi [Θ]
Velocity components:
x- direction : vix = vi cos Θ
y- direction : viy = vi sin Θ
Initial position: x = 0, y = 0
x
y
• Motion is accelerated
• Acceleration is constant, and
downward
• a = g = -9.81m/s2
• The horizontal (x) component of
velocity is constant
• The horizontal and vertical
motions are independent of each
other, but they have a common
time
a = g =
- 9.81m/s2
ANALYSIS OF MOTION:
ASSUMPTIONS
• x-direction (horizontal): uniform motion
• y-direction (vertical): accelerated motion
• no air resistance
QUESTIONS
• What is the trajectory?
• What is the total time of the motion?
• What is the horizontal range?
• What is the maximum height?
• What is the final velocity?
Equations of motion:
X
Uniform motion
Y
Accelerated motion
ACCELERATION ax = 0 ay = g = -9.81 m/s2
VELOCITY vx = vix= vi cos Θ
vx = vi cos Θ
vy = viy+ g t
vy = vi sin Θ + g t
DISPLACEMENT x = vix t = vi t cos Θ
x = vi t cos Θ
y = h + viy t + ½ g t2
y = vi t sin Θ + ½ g t2
Equations of motion:
X
Uniform motion
Y
Accelerated motion
ACCELERATION ax = 0 ay = g = -9.81 m/s2
VELOCITY vx = vi cos Θ vy = vi sin Θ + g t
DISPLACEMENT x = vi t cos Θ y = vi t sin Θ + ½ g t2
Trajectory
x = vi t cos Θ
y = vi t sin Θ + ½ g t2
Eliminate time, t
t = x/(vi cos Θ)
y
x
Parabola, open down
2
22
22
2
cos2
tan
cos2cos
sin
x
v
g
xy
v
gx
v
xv
y
i
ii
i







y = bx + ax2
Total Time, Δt
final height y = 0, after time interval Δt
0 = vi Δt sin Θ + ½ g (Δt)2
Solve for Δt:
y = vi t sin Θ + ½ g t2
0 = vi sin Θ + ½ g Δt
Δt =
2 vi sin Θ
(-g)
t = 0 Δt
x
Horizontal Range, Δx
final y = 0, time is
the total time Δt
x = vi t cos Θ
Δx = vi Δt cos Θ
x
Δx
y
0
Δt =
2 vi sin Θ
(-g)
Δx =
2vi
2 sin Θ cos Θ
(-g)
Δx =
vi
2 sin (2 Θ)
(-g)
sin (2 Θ) = 2 sin Θ cos Θ
Horizontal Range, Δx
Δx =
vi
2 sin (2 Θ)
(-g)
Θ (deg) sin (2 Θ)
0 0.00
15 0.50
30 0.87
45 1.00
60 0.87
75 0.50
90 0
•CONCLUSIONS:
•Horizontal range is greatest for the
throw angle of 450
• Horizontal ranges are the same for
angles Θ and (900 – Θ)
Trajectory and horizontal range
2
22
cos2
tan x
v
g
xy
i 

0
5
10
15
20
25
30
35
0 20 40 60 80
15 deg
30 deg
45 deg
60 deg
75 deg
vi = 25 m/s
Velocity
•Final speed = initial speed (conservation of energy)
•Impact angle = - launch angle (symmetry of parabola)
Maximum Height
vy = vi sin Θ + g t
y = vi t sin Θ + ½ g t2
At maximum height vy = 0
0 = vi sin Θ + g tup
tup =
vi sin Θ
(-g)
tup = Δt/2
hmax = vi t upsin Θ + ½ g tup
2
hmax = vi
2 sin2 Θ/(-g) + ½ g(vi
2 sin2 Θ)/g2
hmax =
vi
2 sin2 Θ
2(-g)
Projectile Motion – Final Equations
Trajectory Parabola, open down
Total time Δt =
Horizontal range Δx =
Max height hmax =
(0,0) – initial position, vi = vi [Θ]– initial velocity, g = -9.81m/s2
2 vi sin Θ
(-g)
vi
2 sin (2 Θ)
(-g)
vi
2 sin2 Θ
2(-g)
PROJECTILE MOTION - SUMMARY
 Projectile motion is motion with a constant
horizontal velocity combined with a constant
vertical acceleration
 The projectile moves along a parabola

More Related Content

What's hot (20)

1.1.1C Midpoint and Distance Formulas
1.1.1C Midpoint and Distance Formulas1.1.1C Midpoint and Distance Formulas
1.1.1C Midpoint and Distance Formulas
 
sins of omission (iii)
sins of omission (iii)sins of omission (iii)
sins of omission (iii)
 
Components of vector
Components of vectorComponents of vector
Components of vector
 
Circles and coordinate circles
Circles and coordinate circlesCircles and coordinate circles
Circles and coordinate circles
 
Arts 10 learning material
Arts 10  learning materialArts 10  learning material
Arts 10 learning material
 
g10 3rd quarter New composers
g10 3rd quarter New composersg10 3rd quarter New composers
g10 3rd quarter New composers
 
20th and 21st century multimedia forms
20th and 21st century multimedia forms20th and 21st century multimedia forms
20th and 21st century multimedia forms
 
Parts of-a-circle
Parts of-a-circleParts of-a-circle
Parts of-a-circle
 
New composers .pptx
New composers .pptxNew composers .pptx
New composers .pptx
 
New music composers
New music composers New music composers
New music composers
 
Projectile Motion
Projectile Motion Projectile Motion
Projectile Motion
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Circles
CirclesCircles
Circles
 
jose rizal el filibusterismo el filibusterimo
jose rizal el filibusterismo el filibusterimojose rizal el filibusterismo el filibusterimo
jose rizal el filibusterismo el filibusterimo
 
Afro-Latin American Music
Afro-Latin American MusicAfro-Latin American Music
Afro-Latin American Music
 
Ellipse
EllipseEllipse
Ellipse
 
Introduction to Kinematics
Introduction to KinematicsIntroduction to Kinematics
Introduction to Kinematics
 
Philippine Contemporary Music
Philippine Contemporary MusicPhilippine Contemporary Music
Philippine Contemporary Music
 
Deterministic Signal
Deterministic SignalDeterministic Signal
Deterministic Signal
 
Math12 lesson 3
Math12 lesson 3Math12 lesson 3
Math12 lesson 3
 

Viewers also liked

Diploma sem 2 applied science physics-unit 4-chap-1 projectile motion
Diploma sem 2 applied science physics-unit 4-chap-1 projectile motionDiploma sem 2 applied science physics-unit 4-chap-1 projectile motion
Diploma sem 2 applied science physics-unit 4-chap-1 projectile motionRai University
 
(5) projectile motion
(5) projectile motion(5) projectile motion
(5) projectile motionphysics101
 
Projectile
ProjectileProjectile
ProjectileAnjani
 
Projectile Motion
Projectile MotionProjectile Motion
Projectile Motionawalling
 
Projectile Motion
Projectile MotionProjectile Motion
Projectile MotionArlo Alegre
 
Projectile motion equations_of_motion
Projectile motion equations_of_motionProjectile motion equations_of_motion
Projectile motion equations_of_motionAngela Stott
 
PAp physics 1&2_-_projectile_motion
PAp physics 1&2_-_projectile_motionPAp physics 1&2_-_projectile_motion
PAp physics 1&2_-_projectile_motionkampkorten
 
Grade 11, U1C-L3, Horiz PM
Grade 11, U1C-L3, Horiz PM Grade 11, U1C-L3, Horiz PM
Grade 11, U1C-L3, Horiz PM gruszecki1
 
Chapter 3. vectors projectiles
Chapter 3. vectors projectilesChapter 3. vectors projectiles
Chapter 3. vectors projectilesSonakshi Gupta
 
1.2 displacement and position vs time graphs
1.2   displacement and position vs time graphs1.2   displacement and position vs time graphs
1.2 displacement and position vs time graphsDavid Young
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensionsSiyavula
 
Two Dimensional Motion and Vectors
Two Dimensional Motion and VectorsTwo Dimensional Motion and Vectors
Two Dimensional Motion and VectorsZBTHS
 

Viewers also liked (20)

Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Diploma sem 2 applied science physics-unit 4-chap-1 projectile motion
Diploma sem 2 applied science physics-unit 4-chap-1 projectile motionDiploma sem 2 applied science physics-unit 4-chap-1 projectile motion
Diploma sem 2 applied science physics-unit 4-chap-1 projectile motion
 
(5) projectile motion
(5) projectile motion(5) projectile motion
(5) projectile motion
 
Projectil motion
Projectil motionProjectil motion
Projectil motion
 
Projectile
ProjectileProjectile
Projectile
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Projectile Motion
Projectile MotionProjectile Motion
Projectile Motion
 
Projectile Motion
Projectile MotionProjectile Motion
Projectile Motion
 
Projectile motion equations_of_motion
Projectile motion equations_of_motionProjectile motion equations_of_motion
Projectile motion equations_of_motion
 
PAp physics 1&2_-_projectile_motion
PAp physics 1&2_-_projectile_motionPAp physics 1&2_-_projectile_motion
PAp physics 1&2_-_projectile_motion
 
1.2.1 projectile motion
1.2.1   projectile motion1.2.1   projectile motion
1.2.1 projectile motion
 
Grade 11, U1C-L3, Horiz PM
Grade 11, U1C-L3, Horiz PM Grade 11, U1C-L3, Horiz PM
Grade 11, U1C-L3, Horiz PM
 
Physics/Notes 6.1
Physics/Notes 6.1Physics/Notes 6.1
Physics/Notes 6.1
 
Projectiles
ProjectilesProjectiles
Projectiles
 
Chapter 3. vectors projectiles
Chapter 3. vectors projectilesChapter 3. vectors projectiles
Chapter 3. vectors projectiles
 
Parabolic motion
Parabolic motionParabolic motion
Parabolic motion
 
1.2 displacement and position vs time graphs
1.2   displacement and position vs time graphs1.2   displacement and position vs time graphs
1.2 displacement and position vs time graphs
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensions
 
Two Dimensional Motion and Vectors
Two Dimensional Motion and VectorsTwo Dimensional Motion and Vectors
Two Dimensional Motion and Vectors
 

Similar to Projectile motion

03 Motion in Two & Three Dimensions.ppt
03 Motion in Two & Three Dimensions.ppt03 Motion in Two & Three Dimensions.ppt
03 Motion in Two & Three Dimensions.pptCharleneMaeADotillos
 
Projectile motionchemistory (4)
Projectile motionchemistory (4)Projectile motionchemistory (4)
Projectile motionchemistory (4)Sahil Raturi
 
PROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalPROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalMAESTRELLAMesa2
 
projectile motion grade 9-170213175803.pptx
projectile motion grade 9-170213175803.pptxprojectile motion grade 9-170213175803.pptx
projectile motion grade 9-170213175803.pptxPrincessRegunton
 
4. Motion in a Plane 1.pptx.pdf
4. Motion in a Plane 1.pptx.pdf4. Motion in a Plane 1.pptx.pdf
4. Motion in a Plane 1.pptx.pdfMKumarVarnana
 
Ch 12 (4) Curvilinear Motion X-Y Coordinate.pptx
Ch 12 (4) Curvilinear Motion X-Y  Coordinate.pptxCh 12 (4) Curvilinear Motion X-Y  Coordinate.pptx
Ch 12 (4) Curvilinear Motion X-Y Coordinate.pptxBilalHassan124013
 
projectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfprojectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfMaAnnFuriscal3
 
projectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfprojectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfMaAnnFuriscal3
 
2 2-d kinematics notes
2   2-d kinematics notes2   2-d kinematics notes
2 2-d kinematics notescpphysics
 
Projectile motion
Projectile motionProjectile motion
Projectile motiongngr0810
 
Projectile motion
Projectile motionProjectile motion
Projectile motiongngr0810
 
chapter 2_Projectile_Motion final (1) (1).pdf
chapter 2_Projectile_Motion final (1) (1).pdfchapter 2_Projectile_Motion final (1) (1).pdf
chapter 2_Projectile_Motion final (1) (1).pdfhend49
 

Similar to Projectile motion (20)

projectile motion.ppt
projectile motion.pptprojectile motion.ppt
projectile motion.ppt
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Projectile motion (2)
Projectile motion (2)Projectile motion (2)
Projectile motion (2)
 
Ch#4 MOTION IN 2 DIMENSIONS
Ch#4 MOTION IN 2 DIMENSIONSCh#4 MOTION IN 2 DIMENSIONS
Ch#4 MOTION IN 2 DIMENSIONS
 
03 Motion in Two & Three Dimensions.ppt
03 Motion in Two & Three Dimensions.ppt03 Motion in Two & Three Dimensions.ppt
03 Motion in Two & Three Dimensions.ppt
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Projectile motionchemistory (4)
Projectile motionchemistory (4)Projectile motionchemistory (4)
Projectile motionchemistory (4)
 
PROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalPROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and Vertical
 
projectile motion grade 9-170213175803.pptx
projectile motion grade 9-170213175803.pptxprojectile motion grade 9-170213175803.pptx
projectile motion grade 9-170213175803.pptx
 
4. Motion in a Plane 1.pptx.pdf
4. Motion in a Plane 1.pptx.pdf4. Motion in a Plane 1.pptx.pdf
4. Motion in a Plane 1.pptx.pdf
 
Ch 12 (4) Curvilinear Motion X-Y Coordinate.pptx
Ch 12 (4) Curvilinear Motion X-Y  Coordinate.pptxCh 12 (4) Curvilinear Motion X-Y  Coordinate.pptx
Ch 12 (4) Curvilinear Motion X-Y Coordinate.pptx
 
PROJECTILE MOTION
PROJECTILE MOTIONPROJECTILE MOTION
PROJECTILE MOTION
 
projectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfprojectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdf
 
projectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfprojectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdf
 
2 2-d kinematics notes
2   2-d kinematics notes2   2-d kinematics notes
2 2-d kinematics notes
 
Kinematic equations
Kinematic equationsKinematic equations
Kinematic equations
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
chapter 2_Projectile_Motion final (1) (1).pdf
chapter 2_Projectile_Motion final (1) (1).pdfchapter 2_Projectile_Motion final (1) (1).pdf
chapter 2_Projectile_Motion final (1) (1).pdf
 

More from TekZeno

Buoyancy.ppt
Buoyancy.pptBuoyancy.ppt
Buoyancy.pptTekZeno
 
Acceleration
AccelerationAcceleration
AccelerationTekZeno
 
Work and energy
Work and energyWork and energy
Work and energyTekZeno
 
Universal forces
Universal forcesUniversal forces
Universal forcesTekZeno
 
Static electricity
Static electricityStatic electricity
Static electricityTekZeno
 
Newtons laws of_motion - 3rd law
Newtons laws of_motion - 3rd lawNewtons laws of_motion - 3rd law
Newtons laws of_motion - 3rd lawTekZeno
 
Newtons laws of_motion - 2nd law
Newtons laws of_motion - 2nd lawNewtons laws of_motion - 2nd law
Newtons laws of_motion - 2nd lawTekZeno
 
Newtons laws of_motion - 1st law
Newtons laws of_motion - 1st lawNewtons laws of_motion - 1st law
Newtons laws of_motion - 1st lawTekZeno
 
Magnetism
MagnetismMagnetism
MagnetismTekZeno
 
Light em&bigbang
Light em&bigbangLight em&bigbang
Light em&bigbangTekZeno
 
Gravity and motion
Gravity and motionGravity and motion
Gravity and motionTekZeno
 
Friction
FrictionFriction
FrictionTekZeno
 
Free body diagrams
Free body diagramsFree body diagrams
Free body diagramsTekZeno
 
Electricity
ElectricityElectricity
ElectricityTekZeno
 

More from TekZeno (20)

Buoyancy.ppt
Buoyancy.pptBuoyancy.ppt
Buoyancy.ppt
 
Acceleration
AccelerationAcceleration
Acceleration
 
Work and energy
Work and energyWork and energy
Work and energy
 
Waves
WavesWaves
Waves
 
Universal forces
Universal forcesUniversal forces
Universal forces
 
Static electricity
Static electricityStatic electricity
Static electricity
 
Sound
SoundSound
Sound
 
Power
PowerPower
Power
 
Newtons laws of_motion - 3rd law
Newtons laws of_motion - 3rd lawNewtons laws of_motion - 3rd law
Newtons laws of_motion - 3rd law
 
Newtons laws of_motion - 2nd law
Newtons laws of_motion - 2nd lawNewtons laws of_motion - 2nd law
Newtons laws of_motion - 2nd law
 
Newtons laws of_motion - 1st law
Newtons laws of_motion - 1st lawNewtons laws of_motion - 1st law
Newtons laws of_motion - 1st law
 
Motion2
Motion2Motion2
Motion2
 
Motion
MotionMotion
Motion
 
Metrics
MetricsMetrics
Metrics
 
Magnetism
MagnetismMagnetism
Magnetism
 
Light em&bigbang
Light em&bigbangLight em&bigbang
Light em&bigbang
 
Gravity and motion
Gravity and motionGravity and motion
Gravity and motion
 
Friction
FrictionFriction
Friction
 
Free body diagrams
Free body diagramsFree body diagrams
Free body diagrams
 
Electricity
ElectricityElectricity
Electricity
 

Recently uploaded

Triploidy ...............................pptx
Triploidy ...............................pptxTriploidy ...............................pptx
Triploidy ...............................pptxCherry
 
B lymphocytes, Receptors, Maturation and Activation
B lymphocytes, Receptors, Maturation and ActivationB lymphocytes, Receptors, Maturation and Activation
B lymphocytes, Receptors, Maturation and ActivationBhanu Krishan
 
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...TALAPATI ARUNA CHENNA VYDYANAD
 
Lubrication System in forced feed system
Lubrication System in forced feed systemLubrication System in forced feed system
Lubrication System in forced feed systemADB online India
 
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 RpWASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 RpSérgio Sacani
 
mixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategymixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategyMansiBishnoi1
 
RACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxRACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxArunLakshmiMeenakshi
 
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Sahil Suleman
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Sérgio Sacani
 
GBSN - Microbiology Lab (Microbiology Lab Safety Procedures)
GBSN -  Microbiology Lab (Microbiology Lab Safety Procedures)GBSN -  Microbiology Lab (Microbiology Lab Safety Procedures)
GBSN - Microbiology Lab (Microbiology Lab Safety Procedures)Areesha Ahmad
 
Cellular Communication and regulation of communication mechanisms to sing the...
Cellular Communication and regulation of communication mechanisms to sing the...Cellular Communication and regulation of communication mechanisms to sing the...
Cellular Communication and regulation of communication mechanisms to sing the...Nistarini College, Purulia (W.B) India
 
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Sérgio Sacani
 
GBSN - Microbiology (Unit 6) Human and Microbial interaction
GBSN - Microbiology (Unit 6) Human and Microbial interactionGBSN - Microbiology (Unit 6) Human and Microbial interaction
GBSN - Microbiology (Unit 6) Human and Microbial interactionAreesha Ahmad
 
Isolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxIsolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxGOWTHAMIM22
 
IISc Bangalore M.E./M.Tech. courses and fees 2024
IISc Bangalore M.E./M.Tech. courses and fees 2024IISc Bangalore M.E./M.Tech. courses and fees 2024
IISc Bangalore M.E./M.Tech. courses and fees 2024SciAstra
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Ansari Aashif Raza Mohd Imtiyaz
 
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...Sérgio Sacani
 
EU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdfEU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdfStart Project
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...Sérgio Sacani
 
In-pond Race way systems for Aquaculture (IPRS).pptx
In-pond Race way systems for Aquaculture (IPRS).pptxIn-pond Race way systems for Aquaculture (IPRS).pptx
In-pond Race way systems for Aquaculture (IPRS).pptxMAGOTI ERNEST
 

Recently uploaded (20)

Triploidy ...............................pptx
Triploidy ...............................pptxTriploidy ...............................pptx
Triploidy ...............................pptx
 
B lymphocytes, Receptors, Maturation and Activation
B lymphocytes, Receptors, Maturation and ActivationB lymphocytes, Receptors, Maturation and Activation
B lymphocytes, Receptors, Maturation and Activation
 
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
 
Lubrication System in forced feed system
Lubrication System in forced feed systemLubrication System in forced feed system
Lubrication System in forced feed system
 
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 RpWASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
 
mixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategymixotrophy in cyanobacteria: a dual nutritional strategy
mixotrophy in cyanobacteria: a dual nutritional strategy
 
RACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptxRACEMIzATION AND ISOMERISATION completed.pptx
RACEMIzATION AND ISOMERISATION completed.pptx
 
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
 
GBSN - Microbiology Lab (Microbiology Lab Safety Procedures)
GBSN -  Microbiology Lab (Microbiology Lab Safety Procedures)GBSN -  Microbiology Lab (Microbiology Lab Safety Procedures)
GBSN - Microbiology Lab (Microbiology Lab Safety Procedures)
 
Cellular Communication and regulation of communication mechanisms to sing the...
Cellular Communication and regulation of communication mechanisms to sing the...Cellular Communication and regulation of communication mechanisms to sing the...
Cellular Communication and regulation of communication mechanisms to sing the...
 
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
 
GBSN - Microbiology (Unit 6) Human and Microbial interaction
GBSN - Microbiology (Unit 6) Human and Microbial interactionGBSN - Microbiology (Unit 6) Human and Microbial interaction
GBSN - Microbiology (Unit 6) Human and Microbial interaction
 
Isolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxIsolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptx
 
IISc Bangalore M.E./M.Tech. courses and fees 2024
IISc Bangalore M.E./M.Tech. courses and fees 2024IISc Bangalore M.E./M.Tech. courses and fees 2024
IISc Bangalore M.E./M.Tech. courses and fees 2024
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
 
EU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdfEU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdf
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
 
In-pond Race way systems for Aquaculture (IPRS).pptx
In-pond Race way systems for Aquaculture (IPRS).pptxIn-pond Race way systems for Aquaculture (IPRS).pptx
In-pond Race way systems for Aquaculture (IPRS).pptx
 

Projectile motion

  • 1. PROJECTILE MOTION High School Physics Part 1. Part 2. Free powerpoints at http://www.worldofteaching.com
  • 2. Introduction  Projectile Motion: Motion through the air without a propulsion  Examples:
  • 3. Part 1. Motion of Objects Projected Horizontally
  • 5. x y
  • 6. x y
  • 7. x y
  • 8. x y
  • 9. x y •Motion is accelerated •Acceleration is constant, and downward • a = g = -9.81m/s2 •The horizontal (x) component of velocity is constant •The horizontal and vertical motions are independent of each other, but they have a common time g = -9.81m/s2
  • 10. ANALYSIS OF MOTION ASSUMPTIONS: • x-direction (horizontal): uniform motion • y-direction (vertical): accelerated motion • no air resistance QUESTIONS: • What is the trajectory? • What is the total time of the motion? • What is the horizontal range? • What is the final velocity?
  • 11. x y 0 Frame of reference: h v0 Equations of motion: X Uniform m. Y Accel. m. ACCL. ax = 0 ay = g = -9.81 m/s2 VELC. vx = v0 vy = g t DSPL. x = v0 t y = h + ½ g t2 g
  • 12. Trajectory x = v0 t y = h + ½ g t2 Eliminate time, t t = x/v0 y = h + ½ g (x/v0)2 y = h + ½ (g/v0 2) x2 y = ½ (g/v0 2) x2 + h y x h Parabola, open down v01 v02 > v01
  • 13. Total Time, Δt y = h + ½ g t2 final y = 0 y x h ti =0 tf =Δt 0 = h + ½ g (Δt)2 Solve for Δt: Δt = √ 2h/(-g) Δt = √ 2h/(9.81ms-2) Total time of motion depends only on the initial height, h Δt = tf - ti
  • 14. Horizontal Range, Δx final y = 0, time is the total time Δt y x h Δt = √ 2h/(-g) Δx = v0 √ 2h/(-g) Horizontal range depends on the initial height, h, and the initial velocity, v0 Δx x = v0 t Δx = v0 Δt
  • 15. VELOCITY v vx = v0 vy = g t v = √vx 2 + vy 2 = √v0 2+g2t2 tg Θ = v y / v x = g t / v 0 Θ
  • 16. FINAL VELOCITY v vx = v0 vy = g t v = √vx 2 + vy 2 v = √v0 2+g2(2h /(-g)) v = √ v0 2+ 2h(-g) Θ tg Θ = g Δt / v0 = -(-g)√2h/(-g) / v0 = -√2h(-g) / v0 Θ is negative (below the horizontal line) Δt = √ 2h/(-g)
  • 17. HORIZONTAL THROW - Summary Trajectory Half -parabola, open down Total time Δt = √ 2h/(-g) Horizontal Range Δx = v0 √ 2h/(-g) Final Velocity v = √ v0 2+ 2h(-g) tg Θ = -√2h(-g) / v0 h – initial height, v0 – initial horizontal velocity, g = -9.81m/s2
  • 18. Part 2. Motion of objects projected at an angle
  • 19. vi x y θ vix viy Initial velocity: vi = vi [Θ] Velocity components: x- direction : vix = vi cos Θ y- direction : viy = vi sin Θ Initial position: x = 0, y = 0
  • 20. x y • Motion is accelerated • Acceleration is constant, and downward • a = g = -9.81m/s2 • The horizontal (x) component of velocity is constant • The horizontal and vertical motions are independent of each other, but they have a common time a = g = - 9.81m/s2
  • 21. ANALYSIS OF MOTION: ASSUMPTIONS • x-direction (horizontal): uniform motion • y-direction (vertical): accelerated motion • no air resistance QUESTIONS • What is the trajectory? • What is the total time of the motion? • What is the horizontal range? • What is the maximum height? • What is the final velocity?
  • 22. Equations of motion: X Uniform motion Y Accelerated motion ACCELERATION ax = 0 ay = g = -9.81 m/s2 VELOCITY vx = vix= vi cos Θ vx = vi cos Θ vy = viy+ g t vy = vi sin Θ + g t DISPLACEMENT x = vix t = vi t cos Θ x = vi t cos Θ y = h + viy t + ½ g t2 y = vi t sin Θ + ½ g t2
  • 23. Equations of motion: X Uniform motion Y Accelerated motion ACCELERATION ax = 0 ay = g = -9.81 m/s2 VELOCITY vx = vi cos Θ vy = vi sin Θ + g t DISPLACEMENT x = vi t cos Θ y = vi t sin Θ + ½ g t2
  • 24. Trajectory x = vi t cos Θ y = vi t sin Θ + ½ g t2 Eliminate time, t t = x/(vi cos Θ) y x Parabola, open down 2 22 22 2 cos2 tan cos2cos sin x v g xy v gx v xv y i ii i        y = bx + ax2
  • 25. Total Time, Δt final height y = 0, after time interval Δt 0 = vi Δt sin Θ + ½ g (Δt)2 Solve for Δt: y = vi t sin Θ + ½ g t2 0 = vi sin Θ + ½ g Δt Δt = 2 vi sin Θ (-g) t = 0 Δt x
  • 26. Horizontal Range, Δx final y = 0, time is the total time Δt x = vi t cos Θ Δx = vi Δt cos Θ x Δx y 0 Δt = 2 vi sin Θ (-g) Δx = 2vi 2 sin Θ cos Θ (-g) Δx = vi 2 sin (2 Θ) (-g) sin (2 Θ) = 2 sin Θ cos Θ
  • 27. Horizontal Range, Δx Δx = vi 2 sin (2 Θ) (-g) Θ (deg) sin (2 Θ) 0 0.00 15 0.50 30 0.87 45 1.00 60 0.87 75 0.50 90 0 •CONCLUSIONS: •Horizontal range is greatest for the throw angle of 450 • Horizontal ranges are the same for angles Θ and (900 – Θ)
  • 28. Trajectory and horizontal range 2 22 cos2 tan x v g xy i   0 5 10 15 20 25 30 35 0 20 40 60 80 15 deg 30 deg 45 deg 60 deg 75 deg vi = 25 m/s
  • 29. Velocity •Final speed = initial speed (conservation of energy) •Impact angle = - launch angle (symmetry of parabola)
  • 30. Maximum Height vy = vi sin Θ + g t y = vi t sin Θ + ½ g t2 At maximum height vy = 0 0 = vi sin Θ + g tup tup = vi sin Θ (-g) tup = Δt/2 hmax = vi t upsin Θ + ½ g tup 2 hmax = vi 2 sin2 Θ/(-g) + ½ g(vi 2 sin2 Θ)/g2 hmax = vi 2 sin2 Θ 2(-g)
  • 31. Projectile Motion – Final Equations Trajectory Parabola, open down Total time Δt = Horizontal range Δx = Max height hmax = (0,0) – initial position, vi = vi [Θ]– initial velocity, g = -9.81m/s2 2 vi sin Θ (-g) vi 2 sin (2 Θ) (-g) vi 2 sin2 Θ 2(-g)
  • 32. PROJECTILE MOTION - SUMMARY  Projectile motion is motion with a constant horizontal velocity combined with a constant vertical acceleration  The projectile moves along a parabola