初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか

初めてのデータ分析基盤構築をまかされた、
その時何を考えておくと良いのか
2020/07/27 Tech-on MeetUp Online #2
「もしエンタープライズのエンジニアがデータ分析をやることになったら」
@yutah_3
自己紹介
普段のお仕事
● データ分析や DB 周りで困っているお客様への技術的ご支援を
しております
● チームを動きやすく、データドリブン/データインスパイアな意思
決定をするべく社内 DWH のデータマートの整備やデータ分析
を日常的にやっています
● BigQuery ユーザーでもあり、コンサルでもあります
● 日経 xTech Learning 等に寄稿したりしています
   ” Googleエンジニアと学ぶ GCP[ビッグデータ]” 
https://xtech.nikkei.com/atcl/learning/lecture/19/00089/
#本日は個人としての登壇であり、所属する企業、
 団体を代表する意見ではありませんが、
 私の経験上 GCP (Google Cloud) の話が多くなります。
寳野 雄太 | Yuta Hono
Head of Specialist Customer Engineering
(Analytics & DB)
Google Cloud
Twitter : @yutah_3
本日のお話
● 気をつけたいデータ分析プロジェクト
● そもそも、「データ分析をするぞ!」って・・・?
● あるある注意点とその解決例
気をつけたい
データ分析プロジェクト
こんな経験、ありませんか?
DX※
に力入れたくて、データ
分析、始めたいんだよね、い
い感じにしてよ!
あ、はい、わかりました
何をすればいいん
だろう・・・
※ Digital Transformation の略
以下、いらすとや さんのイラストを利用させていただき、
ゆるーくいきます。
気をつけたいデータ分析プロジェクト
とりあえず箱をつくろう。
アプリ
DB
アプリ
サーバーログ
その他
(IoT, 非構造, 半
構造データ )
データレイク
完
そもそも、
「データ分析をするぞ!」
って・・・?
そもそも何をしたいのか掘り下げ
なぜデータ分析するんでしょうか?
いまはやっていないのでしょうか?
進捗把握をしたい
● 定形ダッシュボード
原因見つけたい
● アドホック分析
● データマイニング
● BIツールのドリルダウン
売上をあげたい
● レコメンド(ML)
● セグメンテーション (ML)
データ分析の例(MECEではない)
意思決定したい
(データインスパイア、データドリブン)
● カスタマイズしたレポート
(含む、データの裏側の理由)
そもそも何をしたいのか掘り下げ
なぜデータ分析するんでしょうか?
いまはやっていないのでしょうか?
進捗把握をしたい
● 定形ダッシュボード
原因見つけたい
● アドホック分析
● データマイニング
● BIツールのドリルダウン
売上をあげたい
● レコメンド(ML)
● セグメンテーション (ML)
データ分析の例(MECEではない)
意思決定したい
(データインスパイア、データドリブン)
● カスタマイズしたレポート
(含む、データの裏側の理由)
本日は時間の都合上割愛
データ分析ではドメイン知識や
ビジネス課題の発見、設定がとても重要ですが
今日はエンジニア向けなので、基盤の話に振ります。
(データ基盤の)
あるある注意点と
その解決例
課題1 . 初期投資できない
アプリ
DB
アプリ
サーバーログ
その他
(IoT, 非構造, 半構造
データ )
データレイク
将来的には 10 PiB
でもまずは 1 GiB / 月
10 PiBはサービスがあたったときの試算
データソースは徐々に増やしていく
総インフラ XX 億円の
稟議、取れますか?
解決例 1 . クラウドを利用する
データレイク
オブジェクトストレージ等、
クラスタを作らず利用できるもの
が相性良
例 : Google Cloud Storage
データ分析基盤と
従量課金のクラウドは相性が良い。
大抵の場合、
データ分析基盤自体は
お金を直接産まない。
ビジネス成果を
見せて投資を増やしてもらう。
アプリ
DB
アプリ
サーバーログ
その他
(IoT, 非構造, 半構造
データ )
課題2 . (狭義の)データレイクにデータ入れっぱなし
アプリ
DB
アプリ
サーバーログ
その他
(IoT, 非構造, 半構造
データ )
データレイク
分析できない /
しない
?
解決例 2. DWH にデータを入れる
データは DWH に格納
あるいはデータレイクとしている
ストレージに
分析クエリをかけられる技術を利用
(トレードオフ : パフォーマンス)
理想的な
アーキテクチャでは
こうだが・・・
※ETL : Extract, Transform, Load の略
データを取り出し、変換し整形しながら
DB などにロードをすることを指す。
アプリ
DB
アプリ
サーバーログ
その他
(IoT, 非構造, 半構造
データ )
データレイク DWH
※ETL
課題3. DWH が用途・部署ごとに乱立(サイロ化)
アプリ
DB
アプリ
サーバーログ
その他
(IoT, 非構造, 半構造
データ )
データレイク
(例:物理ストレージが
異なる、バケットやアカ
ウントが異なる)
実態は:
● 用途・責任別に乱立
各 DWH がクラスタやアカウントが異な
る
● 隣の DWH に欲しいデータがあるの
で、DWH から DWH へのデータコピー
も発生、二重持ち
● 同じデータが気づかず隣りにあって、同
じ ETL を隣でしていることも
● どこにどのデータがコピーされたのか
管理が難しく、混乱 / 高コストへ
DWH
(例:クラスタが異なる)
ETL
解決例 3. 組織を超えてデータの全社最適化
DWH
マルチテナントの DWH を活用:
(例 : BigQuery 等 - Google 社内でもよく使ってます。)
● リージョンで1つの仮想的な「箱」
● 権限で制御、社内でデータシェアしたい場合には
権限を付与するだけ
外部漏洩防止機能は要確認
● データコピーなしにデータ共有、 JOIN ができる
● データを社外から買い付けて即時利用可能
(商用データセット, トムソン・ロイターとCitibank の市場データ事例)
● 副次的に、規模の経済が活きる
自分だけで大きな DWHクラスタを構築する必要なく
十分なパフォーマンスを得られる. コストもクエリ・ストレージとも
に従量課金。(!= クラスタ課金)
アプリ A ログ
アプリ B ログ
基幹 DB データ
課金データ
デバイスログ
IAMや
追加の制御機構
※ 経済産業省の DX推進指標とそのガイダンス でも「データを、部門を超えて全社最適で活用できる
か」というテーマが入ってますね
※追加の制御機構には BigQuery の場合、データ持ち出しや IP 制限などを実現する VPC Service
Controls や列レベルアクセス 、テーブル ACL などがあります
結論?
データがかんたんにシェア
できるシステムが整った!
社内のデータ資産を活かし、
データ活用が加速!
No.
これだけではベースライン.
体制やスキルなども考慮.
このデータどこから来てる?
信用できるデータ?
課題4. データマート責任者不在、効率低下
BI ツール
スプレッドシート
Jupyter Notebooks
クエリ
DWH
ビジネスユーザー/
データアナリスト
データ
サイエンティスト
情報系アプリ
もっとこういうデータが欲しいけど・・・
自分で交渉しないとだめ?
もっとこういう集計形式にしてほしいけ
ど、BI ツール側の計算フィールド追加
するの嫌だなぁ・・・
トランザクション日だけでなく、四半期
とかのカラムもほしい。
このデータどういう意味だっけ?
解決例 4. データのイテレーションを回す
データ追加、フォーマット整備、マート整備、カタログ、リネージュ etc.
ビジネスユーザー/
データアナリスト
データサイエンティスト
データアーキテクト/
データエンジニア
ELT/ETL を見直し要望に答える
データマート整備を実現&
データソース交渉は任せろ!
データカタログやリネージュも
整備してくけど、ドメインナレッジは手伝ってね!
よりビジネスの貢献に
つかう時間が増えた!
もっと X できる?
データから知見を
発見する部分やモデルの開
発に専念できる!
もっと Y できる?
BI ツール
スプレッドシート
Jupyter Notebooks
クエリ
DWH
情報系アプリ
※データガバナンスの世界ではデータ
スチュワードと呼びます。エンジニアが
兼務するのか業務側がやるのか別途
悩ましい。
課題5. データ分析する人のスキルとツールが合わない
BI ツール
スプレッドシート
クエリ
DWH
ビジネスユーザー
情報系アプリ
データ基盤を整えた後、
よくある声:
● やっぱりスプレッドシートで
ダウンロードしたい
(ダウンロードした時期が違うデータを VLOOKUP とか、あ
りますよね・・・)
● BI ツールの使い方覚えるの難しい
● クエリ書くのに黒い画面(コンソール)
見るの嫌だ
● クエリ書くときにデータセットをselect *
(snip) LIMIT 10 とかして
中身みるのは面倒・・・
アナリスト
IT 部門
基盤・ツール整備したのに
データ抽出依頼が減らない ・・・
解決例 5. ユーザーフレンドリーなツールをつかいながら
ユーザー教育する(外部の力もつかうことを検討)
※G Suite Update ブログから引用
例. Connected Sheets ※:
Spreadsheet の関数やピボットテーブルを BigQuery
のクエリにして実行し、描写や使い勝手は
Spreadsheet だが、最新の情報を取り出せる。
=使い勝手 Spreadsheet そのまま
=ローカル取り出しでデータが stale しない
=スケーラビリティは BigQuery が担保
例. BigQuery コンソール :
データセットが UI から探せる。テーブルの中身をプレ
ビューしながらクエリをかけるのはイメージが湧きやす
い。テーブルのカラムに説明を加えることもできる。 メタ
データ管理の Data Catalog とも連動。
=スキーマ設計書と行き来しなくてよい
=こんなデータあるかな?を検索できる
課題6. データの活用による新しい課題
従来:
● 限られたユーザーが限られたデータ活用しかし
ないので、
インデックスチューニングを頑張るOR DWH を
ユーザーごとにわける
データ活用が進むと:
● 全データ、一箇所にあってほしい
● アドホックが増えるので、パターンが読めず、イ
ンデックスチューニングできない
● セルフサービスBI などにより、クエリ数が増え
るので、クエリづまりが起きる
● データアーキテクトの仕事も増えるので、定期
的な DWH のメンテなども時間をかけられない
DWH
ビジネスユーザー
アナリスト
IT 部門
気合でインデックスチューニング
しようとしたけど次々と新しいユース
ケースが。もう無理なので、新しい
データ入れるのやめてください!
重いクエリ投げた
人が一人いて
DWH が動いてい
ません・・・
解決例 6a. 力技
※ BigQuery ドキュメント「スロット」より引用。
データセンターレベルのスケーラビリティを利用すると
インデックスを持たずともあらゆるクエリパターンに高速な分析可能に(力技)
例. BigQuery のクエリ処理の様子:
● 基本的にクエリを複数のワーカーで分散して処理
する
● 複数のワーカーの単位を「スロット」とよぶ
● 場合によっては普通に1 万以上つかうこともある
● 最速で終わるように自動で分散処理を最適化
● 力技でクエリを実行するのでインデックスを持た
ず、基本は対象データのフルスキャンをする = 
インデックスを持たなくても高速
マスタ
ワーカー
分散ディスク
ワーカー ワーカー... ...
分散 インメモリ シャッフル
横にスケールさせる
(スケールアウトの思想)
解決例 6b. 動的なクエリプラン
※ BigQuery ドキュメント「スロット」より引用。
※ 優先順位はBigQuery Reservations で設定する
先に実行されたクエリが DB のリソースを
食いつぶしたまま居残り、後続をブロックしない
例. BigQuery のクエリ処理の様子:
● クエリプランは全て動的
● 全クエリでのパフォーマンス最適化を行うために、
後続の並列クエリが来たら、実行中のクエリの割
当リソースを最適化して後続のクエリも実行できる
ようにする
● (実行優先順位、割当優先も設定できる)
● よくいう「クエリづまり」が起きづらい
解決例 6c. サーバーレス DWH をつかう
ハードウェア
クラウド上の DWH
インデックス、
クラスタ管理、高可用
性担保
データの整理
データマートの管理
メタデータ管理
データ活用
BI, MLデータ
サイエンティスト,
サービス企画
データアーキテクト
クラウドエンジニア
よりよいデータ活用には、
データアーキテクトが必要
クラウド管理から、データ活用にフォーカス
サーバーレス DWH に
任せる
例 : BigQuery  
よりビジネス付加価値の高い
技術にフォーカス
より使いやすいデータ、
でデータ活用を推進
まとめ
データ基盤を考える際には、データ要件に対応できるイテレーションを回せるような体制づくりが重要
● データ整備にフォーカスできるようなリソースのかけ方を目指す
● 新しいスキル習得が必要な場合もある、ギャップを小さくするツールからまず慣れる
データ活用がエンタープライズで進むと、アドホックなクエリが増える(あるいは BI ツールを通したアドホッ
ク)
● インデックスチューニングは諦めて、並列分散処理するような DWH で力技を検討
● クエリの並列性に対応しやすい、動的なクエリプランで実行できる DWH を考慮に入れる
● マルチテナントだと規模の経済が生きる!
ビジネス成果を出すことにフォーカスできるような
基盤を考えて段々と作っていきましょう!
おわり?
いい感じのデータ基盤が
できた!
さいごに
データエンジニアの戦いはまだまだ続く!
で、今度はリアルタイムに
指標見たいな!
あと、売上着地予想出してほし
いな!AI ってやつで!
投資とセットなら
喜んで!
データガバナンスとか Trusted
Data ってやつをね。やっていこ
うと思うんですよ。
この間のアレ(ダッシュボード)す
ごい良かったよ!
etc.
(データ基盤はビジネス要求と密接に関わります。こういうことを言われなくても、常にビジネス要求を
先取りして進化させる必要があります。一緒に頑張りましょう。)
1 of 28

Recommended

データウェアハウスモデリング入門(ダイジェスト版)(事前公開版) by
データウェアハウスモデリング入門(ダイジェスト版)(事前公開版) データウェアハウスモデリング入門(ダイジェスト版)(事前公開版)
データウェアハウスモデリング入門(ダイジェスト版)(事前公開版) Satoshi Nagayasu
9K views39 slides
データ分析を支える技術 DWH再入門 by
データ分析を支える技術 DWH再入門データ分析を支える技術 DWH再入門
データ分析を支える技術 DWH再入門Satoru Ishikawa
3.9K views57 slides
AWSで作る分析基盤 by
AWSで作る分析基盤AWSで作る分析基盤
AWSで作る分析基盤Yu Otsubo
7.3K views118 slides
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話) by
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)Tokoroten Nakayama
9.4K views34 slides
データ分析基盤、どう作る?システム設計のポイント、教えます - Developers.IO 2019 (20191101) by
データ分析基盤、どう作る?システム設計のポイント、教えます - Developers.IO 2019 (20191101)データ分析基盤、どう作る?システム設計のポイント、教えます - Developers.IO 2019 (20191101)
データ分析基盤、どう作る?システム設計のポイント、教えます - Developers.IO 2019 (20191101)Yosuke Katsuki
3.5K views34 slides
ビッグデータ処理データベースの全体像と使い分け
2018年version by
ビッグデータ処理データベースの全体像と使い分け
2018年versionビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年versionTetsutaro Watanabe
21.2K views59 slides

More Related Content

What's hot

データ収集の基本と「JapanTaxi」アプリにおける実践例 by
データ収集の基本と「JapanTaxi」アプリにおける実践例データ収集の基本と「JapanTaxi」アプリにおける実践例
データ収集の基本と「JapanTaxi」アプリにおける実践例Tetsutaro Watanabe
19.6K views30 slides
DMBOKをベースにしたデータマネジメント by
DMBOKをベースにしたデータマネジメントDMBOKをベースにしたデータマネジメント
DMBOKをベースにしたデータマネジメントKent Ishizawa
34.4K views61 slides
超実践 Cloud Spanner 設計講座 by
超実践 Cloud Spanner 設計講座超実践 Cloud Spanner 設計講座
超実践 Cloud Spanner 設計講座Samir Hammoudi
21.3K views26 slides
マルチテナントのアプリケーション実装〜実践編〜 by
マルチテナントのアプリケーション実装〜実践編〜マルチテナントのアプリケーション実装〜実践編〜
マルチテナントのアプリケーション実装〜実践編〜Yoshiki Nakagawa
4.2K views36 slides
データ分析を支える技術 データ分析基盤再入門 by
データ分析を支える技術 データ分析基盤再入門データ分析を支える技術 データ分析基盤再入門
データ分析を支える技術 データ分析基盤再入門Satoru Ishikawa
5.7K views39 slides
Data platformdesign by
Data platformdesignData platformdesign
Data platformdesignRyoma Nagata
1.5K views51 slides

What's hot(20)

データ収集の基本と「JapanTaxi」アプリにおける実践例 by Tetsutaro Watanabe
データ収集の基本と「JapanTaxi」アプリにおける実践例データ収集の基本と「JapanTaxi」アプリにおける実践例
データ収集の基本と「JapanTaxi」アプリにおける実践例
Tetsutaro Watanabe19.6K views
DMBOKをベースにしたデータマネジメント by Kent Ishizawa
DMBOKをベースにしたデータマネジメントDMBOKをベースにしたデータマネジメント
DMBOKをベースにしたデータマネジメント
Kent Ishizawa34.4K views
超実践 Cloud Spanner 設計講座 by Samir Hammoudi
超実践 Cloud Spanner 設計講座超実践 Cloud Spanner 設計講座
超実践 Cloud Spanner 設計講座
Samir Hammoudi21.3K views
マルチテナントのアプリケーション実装〜実践編〜 by Yoshiki Nakagawa
マルチテナントのアプリケーション実装〜実践編〜マルチテナントのアプリケーション実装〜実践編〜
マルチテナントのアプリケーション実装〜実践編〜
Yoshiki Nakagawa4.2K views
データ分析を支える技術 データ分析基盤再入門 by Satoru Ishikawa
データ分析を支える技術 データ分析基盤再入門データ分析を支える技術 データ分析基盤再入門
データ分析を支える技術 データ分析基盤再入門
Satoru Ishikawa5.7K views
Data platformdesign by Ryoma Nagata
Data platformdesignData platformdesign
Data platformdesign
Ryoma Nagata1.5K views
RDB技術者のためのNoSQLガイド NoSQLの必要性と位置づけ by Recruit Technologies
RDB技術者のためのNoSQLガイド NoSQLの必要性と位置づけRDB技術者のためのNoSQLガイド NoSQLの必要性と位置づけ
RDB技術者のためのNoSQLガイド NoSQLの必要性と位置づけ
Recruit Technologies59.8K views
Apache Avro vs Protocol Buffers by Seiya Mizuno
Apache Avro vs Protocol BuffersApache Avro vs Protocol Buffers
Apache Avro vs Protocol Buffers
Seiya Mizuno5.3K views
イミュータブルデータモデル(入門編) by Yoshitaka Kawashima
イミュータブルデータモデル(入門編)イミュータブルデータモデル(入門編)
イミュータブルデータモデル(入門編)
Yoshitaka Kawashima185.9K views
イミュータブルデータモデルの極意 by Yoshitaka Kawashima
イミュータブルデータモデルの極意イミュータブルデータモデルの極意
イミュータブルデータモデルの極意
Yoshitaka Kawashima23.8K views
Cookpad TechConf 2016 - DWHに必要なこと by Minero Aoki
Cookpad TechConf 2016 - DWHに必要なことCookpad TechConf 2016 - DWHに必要なこと
Cookpad TechConf 2016 - DWHに必要なこと
Minero Aoki45.7K views
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」 by Takuto Wada
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」SQLアンチパターン 幻の第26章「とりあえず削除フラグ」
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」
Takuto Wada148.8K views
マルチテナント化で知っておきたいデータベースのこと by Amazon Web Services Japan
マルチテナント化で知っておきたいデータベースのことマルチテナント化で知っておきたいデータベースのこと
マルチテナント化で知っておきたいデータベースのこと
SolrとElasticsearchを比べてみよう by Shinsuke Sugaya
SolrとElasticsearchを比べてみようSolrとElasticsearchを比べてみよう
SolrとElasticsearchを比べてみよう
Shinsuke Sugaya52.3K views
Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤 by Amazon Web Services Japan
Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤
Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤
ビッグデータ処理データベースの全体像と使い分け by Recruit Technologies
ビッグデータ処理データベースの全体像と使い分けビッグデータ処理データベースの全体像と使い分け
ビッグデータ処理データベースの全体像と使い分け
Recruit Technologies31.7K views

Similar to 初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか

DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App... by
DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...
DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...Google Cloud Platform - Japan
1.8K views55 slides
20180627 - DEEP LEARNING LAB / Cognitive Services 最新情報 30 分でズバリ! by
20180627 - DEEP LEARNING LAB / Cognitive Services 最新情報 30 分でズバリ!20180627 - DEEP LEARNING LAB / Cognitive Services 最新情報 30 分でズバリ!
20180627 - DEEP LEARNING LAB / Cognitive Services 最新情報 30 分でズバリ!Takashi Okawa
1.8K views57 slides
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装 by
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装de:code 2017
4K views56 slides
For Power BI Beginners by
For Power BI BeginnersFor Power BI Beginners
For Power BI BeginnersTomoyuki Oota
2.8K views59 slides
【最小限の学習コスト】効率的なビッグデータ収集・連携とは? by
【最小限の学習コスト】効率的なビッグデータ収集・連携とは?【最小限の学習コスト】効率的なビッグデータ収集・連携とは?
【最小限の学習コスト】効率的なビッグデータ収集・連携とは?株式会社クライム
225 views42 slides

Similar to 初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか(20)

DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App... by Google Cloud Platform - Japan
DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...
DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...
20180627 - DEEP LEARNING LAB / Cognitive Services 最新情報 30 分でズバリ! by Takashi Okawa
20180627 - DEEP LEARNING LAB / Cognitive Services 最新情報 30 分でズバリ!20180627 - DEEP LEARNING LAB / Cognitive Services 最新情報 30 分でズバリ!
20180627 - DEEP LEARNING LAB / Cognitive Services 最新情報 30 分でズバリ!
Takashi Okawa1.8K views
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装 by de:code 2017
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
de:code 20174K views
For Power BI Beginners by Tomoyuki Oota
For Power BI BeginnersFor Power BI Beginners
For Power BI Beginners
Tomoyuki Oota2.8K views
【最小限の学習コスト】効率的なビッグデータ収集・連携とは? by 株式会社クライム
【最小限の学習コスト】効率的なビッグデータ収集・連携とは?【最小限の学習コスト】効率的なビッグデータ収集・連携とは?
【最小限の学習コスト】効率的なビッグデータ収集・連携とは?
AIOpsで実現する効率化 OSC 2022 Online Spring TIS by Daisuke Ikeda
AIOpsで実現する効率化 OSC 2022 Online Spring TISAIOpsで実現する効率化 OSC 2022 Online Spring TIS
AIOpsで実現する効率化 OSC 2022 Online Spring TIS
Daisuke Ikeda690 views
Part 4: Power Platform 概説 (製造リファレンス・アーキテクチャ勉強会) by Takeshi Fukuhara
Part 4: Power Platform 概説 (製造リファレンス・アーキテクチャ勉強会)Part 4: Power Platform 概説 (製造リファレンス・アーキテクチャ勉強会)
Part 4: Power Platform 概説 (製造リファレンス・アーキテクチャ勉強会)
Takeshi Fukuhara971 views
カスタマーサクセスのためのデータ整備人の活動記録 by syou6162
カスタマーサクセスのためのデータ整備人の活動記録カスタマーサクセスのためのデータ整備人の活動記録
カスタマーサクセスのためのデータ整備人の活動記録
syou61627K views
ビッグデータ分析基盤が直面する課題をオブジェクトストレージで解決 by CLOUDIAN KK
ビッグデータ分析基盤が直面する課題をオブジェクトストレージで解決ビッグデータ分析基盤が直面する課題をオブジェクトストレージで解決
ビッグデータ分析基盤が直面する課題をオブジェクトストレージで解決
CLOUDIAN KK2.6K views
分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28) by Ryusuke Ashiya
分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)
分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)
Ryusuke Ashiya360 views
Big data解析ビジネス by Mie Mori
Big data解析ビジネスBig data解析ビジネス
Big data解析ビジネス
Mie Mori3.5K views
先行事例から学ぶ IoT / ビッグデータの始め方 by Cloudera Japan
先行事例から学ぶ IoT / ビッグデータの始め方先行事例から学ぶ IoT / ビッグデータの始め方
先行事例から学ぶ IoT / ビッグデータの始め方
Cloudera Japan5.1K views
Data × AI でどんな業務が改善できる? ​製造業様向け Data × AI 活用ユースケース & 製造MVPソリューションのご紹介 by IoTビジネス共創ラボ
Data × AI でどんな業務が改善できる? ​製造業様向け Data × AI 活用ユースケース & 製造MVPソリューションのご紹介Data × AI でどんな業務が改善できる? ​製造業様向け Data × AI 活用ユースケース & 製造MVPソリューションのご紹介
Data × AI でどんな業務が改善できる? ​製造業様向け Data × AI 活用ユースケース & 製造MVPソリューションのご紹介
MLOps Course Slides_JP(配布用).pdf by Yuya Yamamoto
MLOps Course Slides_JP(配布用).pdfMLOps Course Slides_JP(配布用).pdf
MLOps Course Slides_JP(配布用).pdf
Yuya Yamamoto412 views
え?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよ by Yugo Shimizu
え?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよえ?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよ
え?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよ
Yugo Shimizu5.6K views
データ分析基盤について by Yuta Inamura
データ分析基盤についてデータ分析基盤について
データ分析基盤について
Yuta Inamura2.3K views
【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介 by オラクルエンジニア通信
【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介
【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介

More from Techon Organization

心理学・行動経済学を活用した行動変容とAI by
心理学・行動経済学を活用した行動変容とAI心理学・行動経済学を活用した行動変容とAI
心理学・行動経済学を活用した行動変容とAITechon Organization
615 views22 slides
ポスター掲示板オープンデータ化の裏側 by
ポスター掲示板オープンデータ化の裏側ポスター掲示板オープンデータ化の裏側
ポスター掲示板オープンデータ化の裏側Techon Organization
196 views10 slides
静岡県が目指す「VIRTUAL SHIZUOKA構想」とは? by
静岡県が目指す「VIRTUAL SHIZUOKA構想」とは?静岡県が目指す「VIRTUAL SHIZUOKA構想」とは?
静岡県が目指す「VIRTUAL SHIZUOKA構想」とは?Techon Organization
302 views37 slides
マルチクラウドの悩み by
マルチクラウドの悩みマルチクラウドの悩み
マルチクラウドの悩みTechon Organization
520 views8 slides
Tech-on MeetUp#10 「NW-JAWS × Tech-on 勉強会#01」アンケート集計結果 by
Tech-on MeetUp#10 「NW-JAWS × Tech-on 勉強会#01」アンケート集計結果Tech-on MeetUp#10 「NW-JAWS × Tech-on 勉強会#01」アンケート集計結果
Tech-on MeetUp#10 「NW-JAWS × Tech-on 勉強会#01」アンケート集計結果Techon Organization
527 views14 slides
NW-JAWS × Tech-on#01 LT NWaaS(ナース)って、なんなーすか? by
NW-JAWS × Tech-on#01  LT NWaaS(ナース)って、なんなーすか?NW-JAWS × Tech-on#01  LT NWaaS(ナース)って、なんなーすか?
NW-JAWS × Tech-on#01 LT NWaaS(ナース)って、なんなーすか?Techon Organization
336 views12 slides

More from Techon Organization(20)

心理学・行動経済学を活用した行動変容とAI by Techon Organization
心理学・行動経済学を活用した行動変容とAI心理学・行動経済学を活用した行動変容とAI
心理学・行動経済学を活用した行動変容とAI
ポスター掲示板オープンデータ化の裏側 by Techon Organization
ポスター掲示板オープンデータ化の裏側ポスター掲示板オープンデータ化の裏側
ポスター掲示板オープンデータ化の裏側
静岡県が目指す「VIRTUAL SHIZUOKA構想」とは? by Techon Organization
静岡県が目指す「VIRTUAL SHIZUOKA構想」とは?静岡県が目指す「VIRTUAL SHIZUOKA構想」とは?
静岡県が目指す「VIRTUAL SHIZUOKA構想」とは?
Tech-on MeetUp#10 「NW-JAWS × Tech-on 勉強会#01」アンケート集計結果 by Techon Organization
Tech-on MeetUp#10 「NW-JAWS × Tech-on 勉強会#01」アンケート集計結果Tech-on MeetUp#10 「NW-JAWS × Tech-on 勉強会#01」アンケート集計結果
Tech-on MeetUp#10 「NW-JAWS × Tech-on 勉強会#01」アンケート集計結果
NW-JAWS × Tech-on#01 LT NWaaS(ナース)って、なんなーすか? by Techon Organization
NW-JAWS × Tech-on#01  LT NWaaS(ナース)って、なんなーすか?NW-JAWS × Tech-on#01  LT NWaaS(ナース)って、なんなーすか?
NW-JAWS × Tech-on#01 LT NWaaS(ナース)って、なんなーすか?
Tech-on#8 「ロボティクス〜人と生活を支えるTech〜」 アンケート集計結果 by Techon Organization
Tech-on#8  「ロボティクス〜人と生活を支えるTech〜」 アンケート集計結果Tech-on#8  「ロボティクス〜人と生活を支えるTech〜」 アンケート集計結果
Tech-on#8 「ロボティクス〜人と生活を支えるTech〜」 アンケート集計結果
Connected Robotics「ロボットと一緒に働くお店をつくる」 by Techon Organization
Connected Robotics「ロボットと一緒に働くお店をつくる」Connected Robotics「ロボットと一緒に働くお店をつくる」
Connected Robotics「ロボットと一緒に働くお店をつくる」
Tech-on1周年のあゆみと#07クロージング by Techon Organization
Tech-on1周年のあゆみと#07クロージングTech-on1周年のあゆみと#07クロージング
Tech-on1周年のあゆみと#07クロージング
Tech-on MeetUp#06「What can AI(I) do?」 アンケート集計結果 by Techon Organization
Tech-on MeetUp#06「What can AI(I) do?」 アンケート集計結果Tech-on MeetUp#06「What can AI(I) do?」 アンケート集計結果
Tech-on MeetUp#06「What can AI(I) do?」 アンケート集計結果
Tech on#06 SXSW2019に見るAIの未来 帆足啓一郎様@KDDI総合研究所 by Techon Organization
Tech on#06 SXSW2019に見るAIの未来 帆足啓一郎様@KDDI総合研究所Tech on#06 SXSW2019に見るAIの未来 帆足啓一郎様@KDDI総合研究所
Tech on#06 SXSW2019に見るAIの未来 帆足啓一郎様@KDDI総合研究所
Techon Organization4.5K views
Tech on#06 強化学習を使った次世代シミュレーション最適化 Eduardo Gonzalez様@skymind by Techon Organization
Tech on#06 強化学習を使った次世代シミュレーション最適化 Eduardo Gonzalez様@skymindTech on#06 強化学習を使った次世代シミュレーション最適化 Eduardo Gonzalez様@skymind
Tech on#06 強化学習を使った次世代シミュレーション最適化 Eduardo Gonzalez様@skymind
Techon Organization1.6K views
Tech-on MeetUp#05「xR meets Everything 〜VR/AR/MRが変える日常と取り巻く技術たち〜」 アンケート集計結果 by Techon Organization
Tech-on MeetUp#05「xR meets Everything 〜VR/AR/MRが変える日常と取り巻く技術たち〜」 アンケート集計結果Tech-on MeetUp#05「xR meets Everything 〜VR/AR/MRが変える日常と取り巻く技術たち〜」 アンケート集計結果
Tech-on MeetUp#05「xR meets Everything 〜VR/AR/MRが変える日常と取り巻く技術たち〜」 アンケート集計結果
Techon Organization3.4K views

Recently uploaded

こんな私がアクセシビリティ? 〜入り口に立ってモノの見方が広がった話〜.pdf by
こんな私がアクセシビリティ? 〜入り口に立ってモノの見方が広がった話〜.pdfこんな私がアクセシビリティ? 〜入り口に立ってモノの見方が広がった話〜.pdf
こんな私がアクセシビリティ? 〜入り口に立ってモノの見方が広がった話〜.pdfkenshirofujita
10 views12 slides
システム概要.pdf by
システム概要.pdfシステム概要.pdf
システム概要.pdfTaira Shimizu
44 views1 slide
JISTA月例会2023年12月 書籍『3カ月で改善!システム障害対応実践ガイド』ご紹介+失敗学と障害対応と私 by
JISTA月例会2023年12月 書籍『3カ月で改善!システム障害対応実践ガイド』ご紹介+失敗学と障害対応と私JISTA月例会2023年12月 書籍『3カ月で改善!システム障害対応実践ガイド』ご紹介+失敗学と障害対応と私
JISTA月例会2023年12月 書籍『3カ月で改善!システム障害対応実践ガイド』ご紹介+失敗学と障害対応と私修治 松浦
213 views36 slides
概要.pdf by
概要.pdf概要.pdf
概要.pdfTaira Shimizu
6 views1 slide
ウォーターフォール開発で生 産性を測る指標 by
ウォーターフォール開発で生 産性を測る指標ウォーターフォール開発で生 産性を測る指標
ウォーターフォール開発で生 産性を測る指標Kouhei Aoyagi
62 views13 slides
onewedge_companyguide1 by
onewedge_companyguide1onewedge_companyguide1
onewedge_companyguide1ONEWEDGE1
89 views22 slides

Recently uploaded(6)

こんな私がアクセシビリティ? 〜入り口に立ってモノの見方が広がった話〜.pdf by kenshirofujita
こんな私がアクセシビリティ? 〜入り口に立ってモノの見方が広がった話〜.pdfこんな私がアクセシビリティ? 〜入り口に立ってモノの見方が広がった話〜.pdf
こんな私がアクセシビリティ? 〜入り口に立ってモノの見方が広がった話〜.pdf
kenshirofujita10 views
JISTA月例会2023年12月 書籍『3カ月で改善!システム障害対応実践ガイド』ご紹介+失敗学と障害対応と私 by 修治 松浦
JISTA月例会2023年12月 書籍『3カ月で改善!システム障害対応実践ガイド』ご紹介+失敗学と障害対応と私JISTA月例会2023年12月 書籍『3カ月で改善!システム障害対応実践ガイド』ご紹介+失敗学と障害対応と私
JISTA月例会2023年12月 書籍『3カ月で改善!システム障害対応実践ガイド』ご紹介+失敗学と障害対応と私
修治 松浦213 views
ウォーターフォール開発で生 産性を測る指標 by Kouhei Aoyagi
ウォーターフォール開発で生 産性を測る指標ウォーターフォール開発で生 産性を測る指標
ウォーターフォール開発で生 産性を測る指標
Kouhei Aoyagi62 views
onewedge_companyguide1 by ONEWEDGE1
onewedge_companyguide1onewedge_companyguide1
onewedge_companyguide1
ONEWEDGE189 views

初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか