Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

UK Spectrum Policy Forum - Barry Lewis, Samsung - 5G Mobile Communications for 2020 and Beyond Vision and Key Enabling Technologies

4,105 views

Published on

UK Spectrum Policy Forum
Cluster 1: public (cellular) mobile - 8th December 2014

Barry Lewis, Director; Spectrum Management and Regulations, Samsung Electronics Research Institute
5G Mobile Communications for 2020 and Beyond Vision and Key Enabling Technologies

More information at: http://www.techuk.org/about/uk-spectrum-policy-forum

All rights reserved

Published in: Technology

UK Spectrum Policy Forum - Barry Lewis, Samsung - 5G Mobile Communications for 2020 and Beyond Vision and Key Enabling Technologies

  1. 1. 5G Mobile Communications for 2020 and Beyond ‐ Vision and Key Enabling Technologies – UK Spectrum Policy Forum – Cluster 1 Barry Lewis Spectrum Management and Regulations Samsung Research UK December 2014 
  2. 2. 2 Table of Contents
  3. 3. Mobile Trend 3 2010                     2020 Year Devices 12.5Bn 50Bn 2013 2018 Year Bytes /Month 1.5EB 15.9EB 2013 2020 YearPercent 35% 70% 2013 2018 Year Connections 7Bn 10.2Bn [1] VNI Global Mobile Data Traffic Forecast 2013‐2018, Cisco, 2014 [2] The Mobile Economy, GSMA, 2014  [3] Internet of Things, Cisco, 2013 EB (Exa Bytes) = 1,000,000 TB (Tera Bytes)  Mobile Data Traffic[1] Mobile Cloud Traffic[2] Mobile Connections[1] Things Connected[3]
  4. 4. 4 Immersive  Experience Lifelike media everywhere Ubiquitous  Connectivity An intelligent web of  connected things Everything  on Cloud Desktop‐like experience on the go Telepresence Real‐time remote control  of machines 5G Service Vision
  5. 5. 5 Lagging Cloud Service Instantaneous Cloud Service [1] Signals Ahead, AT&T Drive Test Results and Report Preview, 2011 [2] The State of LTE, OpenSignal, 2014 [3] Seagate ST2000DM001 (2TB, 7200rpm Cloud  Service ~ 20 min (Worldwide Avg.) to download HD movie (1.2GB) LTE Downlink Performance[2] World 7.5 Mbps Korea 18.6 Mbps America 6.5 Mbps * Top 3 Cloud Service Provider measured in Suwon Office (2013) Including connect time and response time Cloud  Service Latency : ~ 5 ms ~ 9.6 sec to download HD movie (1.2GB) Desktop HDD[3] Access Time 8.5 ms  Transfer Rate 1.2 Gbps Latency : ~ 50 ms[1] Requirements for Mobile Cloud Service • E2E NW Latency     <   5 ms • Data Rate                 > 1.0 Gbps As‐Is To‐Be Everything on Cloud Cloud Service Initial Access Time* Provider A 82 ms Provider B 111 ms Provider C 128 ms
  6. 6. 6 Immersive Experience 720p HD 12 users User Experience Loading Delay 1.6 sec* LTE Cell Capacity Cell Throughput 64 Mbps[1] [1] 3GPP Submission Package for IMT‐Advanced, 3GPP Contribution RP‐090939 [2] https://support.google.com/youtube/answer/1722171?hl=en [3] http://www.nhk.or.jp/strl/publica/rd/rd140/PDF/P12‐21.pdf Required Bandwidth 720p HD[2]  : 5 Mbps 8K UHD[3] : 85 Mbps Hologram  AR / VR 8K UHD > 100 users * Assuming 720p HD, 1 sec buffering, E2E latency 50ms and TCP connection AR : Augmented Reality VR : Virtual Reality Requirements for Immersive Service • E2E NW Latency     < 5 ms • Cell Throughput     > 10.0 Gbps Limited High Quality Experience Constant  Ultra High Quality Experience As‐Is To‐Be
  7. 7. 7 Ubiquitous Connectivity ~ ` Personal Human Centric, Limited Connections An intelligent web of connected things (IoT) As‐Is To‐Be Manufacturing Retail City, Transportation Home
  8. 8. Telepresence Control Center Remote Surgery Remote DrivingHazardous Work 8 Short Range, Limited Control Long Range, Real‐time Full Control As‐Is To‐Be
  9. 9. 5G Vision & Key Requirements 9
  10. 10. 10 Comprehensive Requirements of “New IMT (5G)” in 7 Categories, Dubbed as 100 Mobility High Future IMT 1000 Peak Data Rate (Mbit/s) 10000101 Low IMT‐2000 IMT‐Adv. Enhanced IMT‐Adv. New radio local area network (RLAN) 50000 ITU‐R WP5D/TEMP/390‐E  Overview
  11. 11. 11 Order of Magnitude Improvement in Peak Data Rate Peak Data Rate > 50 Gbps ‘10‘00 ‘20‘07 50 Gbps 1 Gbps Year Data Rate 384 kbps[2] 75 Mbps[2] 6 Gbps[2] 14 Mbps[1] 1 Gbps[1] 50 Gbps[1] More than x50 over 4G [1] Theoretical Peak Data Rate [2] Data Rate of First Commercial Products Peak Data RateUltra Fast Data Transmission
  12. 12. 12 Uniform Experience of Gbps Speed and Instantaneous Response QoE BS Location Cell Edge QoE BS Location Uniform Experience Regardless of User-location 1 Gbps Anywhere Latency Cell Edge Data Rate E2E Latency < 5 msec Air Latency  < 1 msec 10 ms 1 ms 5 ms 50 ms E2E Latency Air Latency A Tenth of Air Latency A Tenth of E2E Latency Superior User Experience 10 ms
  13. 13. 10 Times More Simultaneous IoT Connections than 4G Simultaneous Connection Massive Connectivity 13 4 Billion 15 Billion 80 Billion NumberofDevices Year Source : Internet of Things by IDATE, 2013 2010 2012 2020 ~ Current Future Smart Transportation Smart Health Smart City Smart Retail Smart  Manufacturing Smart Home `
  14. 14. 14 50 Times More Cost Effective than 4G Time Operator Revenue Traffic Volume ( ∝Operator Cost ) CAPEX[1] OPEX[2] [1] Radio Network Sharing – new paradigm for LTE, http://www.telecom‐cloud.net/radio‐network‐sharing‐the‐new‐paradigm [2] Quest for margins: operational cost strategies for mobile operators in Europe, Capgemini Telecom & Media Insights, Issue 42 50 Times Higher Bits/Cost Building, Rigging  (41%) RAN  Equipment (23%) Network  Testing (12%) Etc.  (24%) Site  Maintenance (36%) Personnel  Expenses (28%) Electricity (15%) Etc. (12%) Backhaul  Lease(9%) Cost Efficiency Cost Effectiveness
  15. 15. Enabling Technologies : RAN & NW 15
  16. 16. Peak Data Rate Cell Edge Data Rate Cell Spectral Efficiency Mobility Cost Efficiency Simultaneous Connection Latency Peak Rate 50 Gbps Peak Rate 1 Gbps 4G frequencies New higher frequencies Frequency band Technology for Above 6 GHz Technology for Above 6 GHz Post‐OFDMPost‐OFDM Advanced MIMO & BF Advanced MIMO & BF Filter‐Bank Multi‐Carrier  Half ‐wavelength BF : Beamforming Peak Data Rate Increase Peak Data Rate Increase Spectral Efficiency & Cell Edge Enhancement Spectral Efficiency & Cell Edge Enhancement Cell Capacity Enhancement Cell Capacity Enhancement 16 Enabling Technologies ‐ RAN (1/2) Disruptive RAN Technologies for Significant Performance Enhancements
  17. 17. Enhanced D2D Enhanced D2D Advanced Small Cell Advanced Small Cell Interference  Management Interference  Management Capacity & Cell Edge Enhancement Capacity & Cell Edge Enhancement Cell Edge Data Rate Enhancement Cell Edge Data Rate Enhancement 17 Enhancing   areal spectral efficiency Interference alignment Areal Spectral Efficiency Increase Areal Spectral Efficiency Increase Peak Data Rate Cell Edge Data Rate Cell Spectral Efficiency Mobility Cost Efficiency Simultaneous Connection Latency D2D : Device‐to‐Device No cell boundary Increased density Wireless backhaul Enabling Technologies ‐ RAN (2/2) Disruptive RAN Technologies for Significant Performance Enhancements
  18. 18. 18 Flat NetworkFlat Network Multi‐RAT Interworking Multi‐RAT Interworking Mobile SDNMobile SDN Radio Capacity Enhancement Radio Capacity Enhancement Energy & Cost Efficiency Increase Energy & Cost Efficiency Increase E2E Latency Reduction E2E Latency Reduction 4G eNB 5G BS Wi-Fi UE BS Switch Central Controller Peak Data Rate Cell Edge Data Rate Cell Spectral Efficiency Mobility Cost Efficiency Simultaneous Connection Latency SDN : Software Defined Network UE BS ServerServer Innovative Network Technologies for Enhanced User Experience and Cost Reduction Enabling Technologies ‐ Network
  19. 19. Above 6 GHz (Mobile Service in the ITU‐R Radio Regulations) < 1 GHz [MHz] 410‐430, 470‐694/698, 694/698‐790[1] 1‐2 GHz [MHz] 1300‐1400, 1427‐1518/1525/1527, 1695‐1700/1710 2‐3 GHz [MHz] 2025‐2100, 2200‐2290, 2700‐3100 3‐5 GHz [MHz] 3300‐3400, 3400‐3800(4200), 4400‐5000 5‐6 GHz [MHz] 5150‐5925, 5850‐6425 Global Interest Bands for WRC‐15 MS : Mobile Service FSS : Fixed Satellite Service LMDS :  Local Multipoint Distribution Service FS : Fixed Service P‐P : Point to Point Below 6 GHz Where to find more than 500 MHz Contiguous Spectrum Globally 300 MHz 6 GHz 29.5 29.5 36 40.5 17.8 19.7 Primary MOBILE Co‐Primary  US       : LMDS, FSS EU       : Fixed P‐P Link  FSS Earth Station Korea : Maritime Use US       : Fixed P‐P System EU       : Fixed P‐P Link  Korea : Broadcasting Relay  Current Usage Current Usage GHz 25.25 29.5 42.543.5 Region 1 Region 2 Region 3 [1] WRC‐15 AI 1.2 19 Wider Bandwidth for 5G 3131.3 36 40.5 25.25 25.25 3131.3 3131.3 36 40.5 17.8 19.7 17.8 19.7 MS, FS, FSSMS, FS, FSSMS, FS, FSSMS, FS, FSS 42.5 42.5 43.5 43.5
  20. 20. 20 Recent R&D Activity Above 6 GHz
  21. 21. 21 In‐Building □ Similar to Indoor Shopping-Mall - Five-story Building - Spacious Atrium Lobby □ Total 35 Rx Locations - Both for LoS and NLoS - Tx-Rx Distance : 10m ~ 55m Campus Urban □ Suburban Environments - KAIST Outdoor Campus - Tx Height 15 meters □ Total 25 Rx Locations - Mainly for NLoS - Tx-Rx Distance : ~ 270m □ Urban Environments - Daejeon City - Tx Height 15 meters □ 11 Rx Locations - Mainly for NLoS - Tx-Rx Distance : ~ 200m Tx Tx Three Types of Environments : In‐Building, Campus, and Urban at 28GHz Channel Measurements (1/2)
  22. 22. 22 Peak Data Rate 7.5Gbps Peak Data Rate 7.5Gbps 5G Mobility Test 1.2Gbps @110km/h 5G Mobility Test 1.2Gbps @110km/h World’s First 5G Data Transmission at Highway Speeds (Oct, 2014) Record‐breaking 1.2Gbps data transmission at over 100km/h, and 7.5Gbps in stationary conditions using 28GHz spectrum mmWave Testbed ‐ Recent Updates [1] “Samsung Electronics Sets 5G Speed Record at 7.5Gbps, Over 30 Times Faster Than 4G LTE”, Samsung Tomorrow, 15 Oct 2014. (http://global.samsungtomorrow.com/?p=43349)
  23. 23. 23 Negligible Area for Antennas In Edges  16 Element Array 16 Element Array < 0.2 mm Measurement Results“Zero Area” Design 32 Elements Implemented on Mobile Device with “Zero Area” and 360o Coverage Device Feasibility ‐ Antenna Implementation for Devices
  24. 24. 24 ‐ 16 BSs ‐ 30m above Rooftop ‐ 16 BSs ‐ 10m above Ground ‐ 10 BSs ‐ Mixed Heights of Scenario 1 & 2 TX RX Scenario 1 Scenario 2 Optimization Real City (Ottawa) BS Deployment Scenarios Ray‐Tracing Ray‐Tracing in Real City Modeling with Various Multi‐Cell BS Deployment Scenarios Multi‐Cell Analysis ‐ Coverage (1/2) Exemplary Scenery In Scenario 1 Exemplary Scenery In Scenario 2 ISD : About 200m
  25. 25. 25 Simulations are Based on Ray‐Tracing in 28 GHz for Multi‐Cell Deployment Scenario Total of 10 Small Cell BSs to Provide Coverage of 928 m x 586 m within a Dense Urban City At least 4 Gbps User Throughput Expected Using 1 GHz Bandwidth Simulated User Experience Samsung DMC R&D Center, “5G mmWave communications,” YouTube, 21 April 2014. (http://www.youtube.com/watch?v=U6dABJBJ4XQ)
  26. 26. Global R&D Activities & Timelines 26
  27. 27. 27 Global R&D Activities Current Global 5G Research Initiatives and Samsung’s Active Engagements 5G Forum Executive Board Member Member of Giga KOREA Project 5G PPP Association (Full Member) Project Leads 5GIC Founding Member NYU Wireless Center (Board Member) IMT-2020 Promotion Group Member of Future Forum Contributor to 863 Project 5GMF (5G Mobile Promotion Forum)
  28. 28. 28 EVAL. Meth. : Evaluation Methodology Req.                    : Requirement  EVAL.             : Evaluation Dvlp. of Rec.     : Development of Recommendation Standards in 3GPP, spectrum allocation in WRC‐19, ITU approval in 2020 5G Standards 20152014 20172016 20192018 2020 3GPP WRC WRC‐19WRC‐15 Rel‐13 Rel‐14 Rel‐15 Rel‐16 ITU‐R Vision EVAL. Meth., Req. Proposal EVAL. Dvlp. of  Rec. “IMT for 2020 and beyond” WRC   : World Radiocommunications Conferences ITU‐R  : International Telecommunication Union Radiocommunication Sector Expected 5G Timelines Initial 5G Commercialization
  29. 29. Copyright © 2014 Samsung Electronics Co. Ltd. All rights reserved. Samsung is a registered trademark of Samsung Electronics Co. Ltd. Specifications and designs are subject to change without notice. Non‐metric weights and measurements are  approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby  recognized and acknowledged. Thank You
  30. 30. [1] “Samsung Announces World’s First 5G mm‐ Wave Mobile Technology”, Samsung Tomorrow, 13 May 2013.   (http://global.samsungtomorrow.com/?p=24093)  [2] Wonil Roh, “Performances and Feasibility of mmWave Beamforming Prototype for 5G Cellular Communications,” ICC 2013 Invited Talk, Jun. 2013. (http://www.ieee‐icc.org/2013/ICC%202013_ mmWave%20Invited%20Talk_Roh.pdf) [3] “Samsung’s Vision of 5G Wireless,” IEEE Spectrum for the Technology Insider, Jul. 2013.   (http://ieeexplore.ieee.org/stamp/stamp. jsp?arnumber=06545095) [4] Z. Pi and F. Khan, “An introduction to millimeter‐wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, Jun. 2011.  [5] T. Kim, J. Park, J. Seol, S. Jeong, J. Cho, and W. Roh, “Tens of Gbps support with mmWave beamforming systems for next generation communications,” IEEE Global Telecomm. Conf.  (GLOBECOM’13), Dec. 2013. [6] “The 5G phone future: Samsung’s millimeter‐wave transceiver technology could enable ultrafast mobile broadband by 2020,” IEEE Spectrum, vol. 50, pp. 11–12, Jul. 2013.  [7] T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang,G. Wong, J. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!”  IEEE Access, vol. 1, pp. 335–349, May 2013. [8] Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., Gutierrez, F., Hwang, D., Rappaport, T. S., ”28 GHz Propagation Measurements for Outdoor Cellular  Communications Using Steerable Beam Antennas in New York City,” Published in the 2013 IEEE International Conference on Communications (ICC), June 9 ~13, 2013. [9] S. Hong, M. Sagong, and C. Lim, “FQAM : A Modulation Scheme for Beyond 4G Cellular Wireless Communication Systems,” IEEE Global Telecomm.Conf. (GLOBECOM’13) Workshop,  Dec. 2013. [10] Wonil Roh, et al., "Millimeter‐Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results,” IEEE Communications Magazine, Feb. 2014. [11] Wonil Roh, “5G Mobile Communications for 2020 and Beyond ‐ Vision and Key Enabling Technologies,” IEEE WCNC 2014 Keynote, Apr. 2014. [12] Kyungwhoon Cheun, “5G Mobile Communications for 2020 and Beyond ‐ Vision and Key Enabling Technologies,” IEEE VTC 2014 Spring Keynote, May. 2014. [13] Ji‐Yun Seol, “5G Mobile Communications for 2020 and Beyond ‐ Vision and Key Enabling Technologies,” IEEE ICC 2014 5G Workshop Panel Talk, Jun. 2014. [14] Wonbin Hong, et al., “Study and Prototyping of Practical Large Scale mmWave Antenna System for 5G Cellular Devices,” IEEE Commun. Mag., vol.52, pp. 63‐69, Sep. 2014. [15] S. Hong, et al., “Frequency and Quadrature‐Amplitude Modulation for Downlink Cellular OFDMA Networks,” IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC), vol.  32, no. 6, Jun. 2014. [16] Theodore S. Rappaport, Wonil Roh & Kyungwhoon Cheun, “Mobile Millimeter‐Wave Makeover”, pp. 34‐58, Sep. 2014 [17] “Samsung Electronics Sets 5G Speed Record at 7.5Gbps, Over 30 Times Faster Than 4G LTE”, Samsung Tomorrow, 15 Oct 2014. (http://global.samsungtomorrow.com/?p=43349) [18] Alper Yegin, et al., “Terminal‐centric Distribution and Orchestration of IP Mobility for 5G Networks,” IEEE Commun. Mag., Nov. 2014, to be published. [19] Cheol Jeong, et al., “Random access in millimeter‐wave beamforming cellular networks: Issues and approaches,” IEEE Commun. Mag., Jan. 2015, to be published. References

×