Drinkwater ice sheet symposium - tu delft climate inst., 17 oct 2013(1)

1,446 views

Published on

On 17/10/2013 TU Delft Climate Institute organised the symposium The Greenland and Antarctic ice sheets: present, future, and unknowns. This is one of the four presentations given there.
http://www.tudelft.nl/nl/actueel/agenda/event/detail/symposium-tu-delft-climate-institute-17th-october-2013/

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,446
On SlideShare
0
From Embeds
0
Number of Embeds
298
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Drinkwater ice sheet symposium - tu delft climate inst., 17 oct 2013(1)

  1. 1. “Progress and New Frontiers in Ice Sheet Remote Sensing” Mark R. Drinkwater European Space Agency ESA-ESTEC Noordwijk, NL
  2. 2. Contents  Introduction  Recent Progress  New Frontiers  Summary Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 2
  3. 3. IPY 2007-2008: Satellite Remote Sensing – The International Polar Year (IPY) provided an international framework for understanding polar processes and high-latitude climate – IPY era spaceborne instrumentation represented a technological leap beyond the capabilities of the IGY – Spaceborne technology offered unique capabilities for obtaining essential data for predictive models – Unique opportunity to assess current state of art in remote sensing of polar regions. 2000 Modified Antarctic Mapping Mission ice velocity model. Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 3
  4. 4. Collecting satellite polar snapshots Aircraft and in-situ Sounders and GPR Systems SSMI MetOp Aqua & Terra DMSP AMSR-E MODIS / ASTER GRACE ASCAT AVHRR Envisat SMOS ERS-2 SPOT-4 RADARSAT HRVIR / VGT IceSat ASAR MERIS / A-ATSR GOCE ALOS PALSAR PRISM / AVNIR-2 wavelength (m) Frequency (Hz) M. Drinkwater (ESA) Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 4
  5. 5. Cryosphere Satellite Missions 02 03 04 06 05 07 08 09 10 11 12 13 14 PALSAR/ALOS L-band RA, SAR & Wind Scat/ERS-2 16 15 ALOS-2 RA2 & ASAR/Envisat C-band RADARSAT-1 C-band GMES S-1A, B RCM RADARSAT-2 C-band SAR/RISAT C-band IPY TerraSAR/Tandem-X X-band HY-3 WSAR SAR/COSMO-SKYMED X-band MetOp -2, -3 ASCAT & AVHRR/MetOp -1 Ku-Scat & MSMR/OCEANSAT-2 Seawinds/QuikSCAT Ku-band ICESAT GOCE WindSat SMOS OLS & SSMI/DMSP— AVHRR & AMSU/NOAA MODIS & AMSR-E/EOS-Aqua Aster/MODIS/EOS-Terra AMSR-2/GCOM-W1 VIIRS/NPP JPSS 1 HY-1B COCTS/HY-1A HY-2A VIRR/FY-1D MODI & MERSI/FY-3A Landsat-5, -7 SPOT-4/5 Courtesy: M. Drinkwater Approved ICESAT-2 GMES S-3A, B GRACE-C CryoSat-2 GRACE In Orbit LEO missions Planned/Pending approval Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 5 FY-3B HY-2B HY-2B FY-3C Landsat DCM Arctica-M 1 & 2 PCW 1 & 2 HEO missions Solid = R & D; Hatched = operational mission
  6. 6. Ice Sheet Mass Balance Ma Mc Mm Mg Mb δM / δa ≅ Ma − Mm − Mg Mass change per year Accumulation Rate Surface Melt flux Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 6 Flux across grounding line Where Mc Calving Flux
  7. 7. Recent Progress: Quantifying components of the Mass budget Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 7
  8. 8. Assessing Continental Scale Volume/Mass Changes: δM / δa ≅ Ma − Mm − Mg Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 8
  9. 9. Greenland: Elevation (Volume)/ Mass Change Envisat m/yr IceSat m/yr Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 9 GRACE mm/yr water eq. Courtesy R. Forsberg et al. (ESA, CCI Project)
  10. 10. Antarctica: Elevation(Volume)/Mass Change IceSAT (2003-08) GRACE (2003-06) m/yr Envisat (2003-2012) Courtesy T. Flament, LEGOS(2013) • • • Pritchard et al. (2009) Velicogna (2009) Envisat RA2 limited latitude (<82o) but all-weather; firn densification and isostatic adjustment models needed to convert from elevation change (volume) to mass change IceSAT limited by cloud and discontinuous temporal sampling, and density of cross-overs; firn densification model needed to convert to mass GRACE – low res.; of limited use in Ant. Peninsula; Considerable residual uncertainty due to Glacial Isostatic Adjustment (GIA) Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 10
  11. 11. ESA’s CryoSat Ice Mission: Basic Facts – Instruments:     SIRAL (SAR/Interferometric Radar Altimeter) Star trackers DORIS (Doppler Orbit and Radio Positioning Integration by Satellite) receiver Laser retro-reflector – High inclination orbit - 88°latitude – Non sun-synchronous orbit – SARIn mode improves across track resolution designed for rugged ice-sheet terrain – 369 day repeat (30 day sub cycle) gives dense across track sampling and captures temporal changes Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 11 Launched: April 8th 2010 http://earth.esa.int/cryosat
  12. 12. Antarctica: CryoSat ice sheet topography CryoSAT ice-sheet elevation models • 1 km grid spacing • LRM & SARIn • Greenland & Antarctica • Validation in progress Progress and Frontiers in Ice Sheet Remote © CPOM/UCL/ESA/Planetaryvisions Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 12
  13. 13. CryoSat ice sheet topography & BEDMAP-2 Former limit of altimetry coverage (ERS/Envisat) CryoSat coverage to 2 deg. off pole CryoSat Topography & BEDMAP basal boundary conditions – key properties governing ice flow © CPOM/UCL/ESA/Planetaryvisions Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 13
  14. 14. Continental Scale Melt Flux: δM / δa ≅ Ma − Mm − Mg & Key Surface Radiative Quantities Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 14
  15. 15. Passive Microwave: daily melt products July 30, 2013 – Extreme July 2012 melt, and extensive melting in 2013 – Strong southeasterly winds across the western coast – Record warmest temperature of 25.9 degrees Celsius in Maniitsoq Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 15 Weather map courtesy - DMI.
  16. 16. Ice Sheet Reflectivity (Albedo) & Melting Before melt Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 16 After melt
  17. 17. Mass Flux across Grounding Line: δM / δa ≅ Ma − Mm − Mg & Ice shelf Calving Flux Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 17
  18. 18. SAR: IPY Pole-to-Coast Ice Velocity Mapping Satellite InSAR data Adapted from Rignot et al, Science Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 18 Courtesy: Schuechl, UCI
  19. 19. ERS-2: Kangerdlussuaq Tidewater Glacier Calving and Retreat Bevan et al. (2013) • ERS-2 placed in 3d repeat orbit before deorbiting. • Images focus on Greenland outlet glaciers (March-May 2011) • Comparison of ERS-1, ERS-2, T-SAR-X indicate 20 year changes Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 19
  20. 20. Ice Sheet/Shelf Grounding Line The Grounding Line is the boundary between the grounded ice and the floating ice It is important for: a) the ice sheet and the ice shelves mass budget calculation b) numerical modelling of ice sheet dynamics c) Ice-ocean interactions Grounding zone d) oceanic tides e) Sub-glacial environments Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 20
  21. 21. CryoSat: Ice shelf Grounding Line (GL) Location & GL Ice Thickness Courtesy, ENVEO metres University of Leeds (UK), of CryoSat+ GLITter consortium Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 21 27 metres ice shelf freeboard translates to ~220 m ice thickness.
  22. 22. Petermann Glacier: 1992 – 2011 Grounding Line Retreat & Thinning 2011 2911 Courtesy N. Gourmelen (Univ. Edinburgh) Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 22
  23. 23. Recent Progress: Gravimetry – **Covered by P. Ditmar Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 23
  24. 24. New Frontier: Better resolution of timespace variability, and process understanding Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 24
  25. 25. CryoSat: Basin-resolved rates of Ice Sheet Elevation/Volume Change 2 years of CryoSat-2 data m/yr 5½ years of ICESat data ESA/University of Leeds Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 25
  26. 26. CryoSat: Sub-glacial Lakes & Basal Hydrologic conditions – CryoSat features a unique capability to map changes in Antarctica’s sub-glacial lakes in 3D. – Sub-glacial lakes interesting in terms of water transport and ice dynamics beneath the surface. – The crater shown was formed when 6 km3 of lake water drained Malcolm McMillan et al – GRL (2013) Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 26
  27. 27. CryoSat: across-track swath elevations • Standard CryoSat level 2 SARIn height product is from point of closest approach (POCA) • Over sloping terrain, SARIn echo maps a wide swath across the ground track, beyond the POCA • Swath SARIn mode returns valid in range 0.5 to 2.0 degrees • Elevations retrieved where good coherence Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 27
  28. 28. Swath topographic mapping with CryoSat Source: Noel Gourmelen and CryoSat+ CryoTop team (ESA STSE Study) Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 28
  29. 29. New Frontier: Seeing beneath the surface Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 29
  30. 30. SMOS: Polar Ice Sheet Data – Ice sheets used as natural, uniform stable calibration reference site (Dome C) – But subtle variability observed in signatures – Absorption in ice is very low at Lband – Thermal microwave emission could originate from up to kilometres depth. – Potential for microwave thermometry? (i.e. in-ice temperature sounding) – Lowest temperatures correspond with subglacial lake basins Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 30 AMSR-E C-band v-pol SMOS L-band v-pol Courtesy L. Kaleschke U. Hamburg
  31. 31. DomeCAir: L-band airborne Campaign Results Tb Cold = Deep basins (counterintuitive) Why? Normally warmer at depth Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 31
  32. 32. New Frontier: Remaining Challenges Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 32
  33. 33. Remaining Challenges – Measure continental snow accumulation directly by remote sensing – Unify models for converting volume to mass (firn compaction) in context of Surface Mass Balance efforts – Direct, routine measurement of ice thickness at grounding lines (P-band?) – Tomography of in-ice layering properties using P-band (ESA Biomass) – Sub-surface sounding of ice profile properties (L-band and UHF frequency range) – Push temporal resolution of observations to sub-daily (i.e. diurnal/tidally forced processes) at suitable spatial scales. Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 33
  34. 34. POLARIS: P-band coherent radar sounding in Greenland Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 35
  35. 35. Summary – IPY allow documenting state-of-art in satellite remote sensing of high latitude regions and the cryosphere – Satellites provide global perspective on the ice sheet processes on a range of space and time scales (daily – decadal) – Huge progress made in study of the mass balance (since early 1990s) – Space observing system capabilities never better for investigating cryosphere in a changing climate – Legacy satellite datasets (ERS, Envisat) and the sustained met satellite measurements support ice sheet climate research – ESA’s new satellite missions (CryoSat, GOCE and SMOS) deliver new data products with exciting potential – Benefits of long satellite data time series self evident: – ESA’s Climate Change Initiative helping to construct fundamental climate data records and Ice Sheet Essential Climate Variables – ESA/EC Copernicus Sentinels coming in 2014 to sustain some capabilities Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 36
  36. 36. Additional Spare Slides Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 38
  37. 37. Accessing ESA Data Products http://earth.esa.int Progress and Frontiers in Ice Sheet Remote Sensing | M. Drinkwater | TU Delft Climate Inst., 17 Oct 2013 | Pag. 39

×