1 xii biotechnology

761 views

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
761
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
10
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • DNA/RNA overview
  • DNA/RNA overview
  • 1 xii biotechnology

    1. 1. Biotechnology Application of scientific and engineering principles for the processing of materials in industrial process to provide goods and services.
    2. 2. Genetic Engineering - makes it possible, through an integrated application of knowledge and techniques of biochemistry, microbiology, genetics and chemical engineering, to draw benefit at the technological level from the properties and capacities of microorganisms and cell culture . Biotechnology
    3. 3. Biotechnology Application potential - agriculture, antibiotics, vitamins, vaccines, dairy industries, fermented products like alcoholic & nonalcoholic beverages, production of biogas, sewage treatment plants, bio-fertilizers, tissue culture, genetic engineering, etc.
    4. 4. Gene concept <ul><li>- Fundamental unit of heredity. </li></ul><ul><li>On chromosome in linear fashion. Locus – position of gene. </li></ul><ul><li>Yanofsky et al  one gene – one polypeptide. </li></ul><ul><li>Seymor Benzer – (unit of) cistron, muton & recon. </li></ul><ul><li>Structural & regulatory gene = 10% active </li></ul>
    5. 5. Gene <ul><li>A gene is a unit of inheritance </li></ul><ul><li>Carries the information for a: </li></ul><ul><li>-polypeptide </li></ul><ul><li>-structural RNA molecule </li></ul>promoter Structural gene flank flank upstream downstream 5’ 3’
    6. 6. Nucleic Acids <ul><li>- megabiomolecules. </li></ul><ul><li>C,H,O & N </li></ul><ul><li>Holds key of life. </li></ul><ul><li>Fredrick Meischer – isolated - nuclein </li></ul><ul><li>Altman – nucleic acid – acidic nature </li></ul><ul><li>Kossel – types of NBs – pu & py </li></ul><ul><li>Ascoli, levene & Jones – two types </li></ul>
    7. 7. Agriculture -plants transformed-insect,disease, and herbicide resistant. -animals treated engineered hormones-produce more milk, leaner meat.
    8. 8. Agriculture -food processors affected by genetic engineering. -shelf-life, storage, food-handling;extended and simplified. -help resist spoilage.
    9. 9. Deoxyribose Nucleic Acid (DNA) <ul><li>Megabiomolecule </li></ul><ul><li>Polynucleotide chain </li></ul><ul><li>Genetic material </li></ul>
    10. 10. Chemical components 1. A pentose sugar. 2. Phosphate group 3. Nitrogenous bases
    11. 11. Nitrogenous bases Purines Pyrimidines Adenine Guanine Thymine Cytosine
    12. 12. Nucleoside and Nucleotide
    13. 13. Phosphodiester linkage
    14. 14. Watson & Crick Model <ul><li>Presented double helix model. (1953) </li></ul><ul><li>Nobel prize -1962 </li></ul><ul><ul><li>Double helix </li></ul></ul><ul><ul><li>Antiparallel strands </li></ul></ul><ul><ul><li>Major & minor grooves </li></ul></ul><ul><ul><li>Str. Of each strand </li></ul></ul><ul><ul><li>Base pairing </li></ul></ul><ul><ul><li>Complementary nature </li></ul></ul><ul><ul><li>3’ & 5’ ends </li></ul></ul><ul><ul><li>Dimensions </li></ul></ul>
    15. 15. 1. Double Helix
    16. 16. 2. Antiparallel strands 3. Major & Minor grooves
    17. 17. <ul><li>Long chain of polynucleotide. </li></ul><ul><li>Deoxyribonucleotides </li></ul><ul><li>Nt  sugar has NB at C1 and P at C5. </li></ul><ul><li>Nt  four types </li></ul><ul><li>Phosphodiester linkage </li></ul>Character of each strand
    18. 18. <ul><li>Specific </li></ul><ul><li>Chargaff’s rule (1:1) </li></ul>Base pairing
    19. 19. Base pairing
    20. 20. Base pairing Complementary nature of strands OH P
    21. 22. <ul><li>. </li></ul>Dimensions
    22. 23. RNA
    23. 24. r ibo n ucleic a cid 4 bases A = U = C = G = 3 major types of RNA messenger RNA (mRNA); template for protein synthesis transfer RNA (tRNA); adaptor molecules that decode the genetic code ribosomal RNA (rRNA); catalyzing the synthesis of proteins C 5 H 10 O 5 A denine U racil C ytosine G uanine Pyrimidine (C 4 N 2 H 4 ) Purine (C 5 N 4 H 4 ) Nucleoside Nucleotide base + sugar (ribose) base + sugar + phosphate RNA RNA structure Thymine (DNA) Uracil (RNA)
    24. 25. Base interactions in RNA Base pairing: U/A/(T) (2 hydrogen bonds) G/C (3 hydrogen bonds) RNA base composition: A + G = U + C / Chargaff’s rule does not apply (RNA usually prevails as single strand) RNA structure: - usually single stranded - many self-complementary regions  RNA commonly exhibits an intricate secondary structure (relatively short, double helical segments alternated with single stranded regions) - complex tertiary interactions fold the RNA in its final three dimensional form - the folded RNA molecule is stabilized by interactions (e.g. hydrogen bonds and base stacking)
    25. 26. mRNA <ul><li>3-5% </li></ul><ul><li>Linear, single, longest </li></ul><ul><li>Syntheiszed in nucleus </li></ul><ul><li>Triplets  codons  amino acid </li></ul><ul><li>The sequence of codon  mRNA language / cryptogram/ genetic code </li></ul><ul><li>Initiation AUG at 5’ end  methionine </li></ul><ul><li>Termination codon  UAA, UAG or UGA </li></ul><ul><ul><ul><li>Function – carries message </li></ul></ul></ul>
    26. 27. <ul><li>80% </li></ul><ul><li>Found in ribosome </li></ul><ul><li>Synthesized in nucleolus </li></ul><ul><li>Get folded </li></ul><ul><ul><li>Function : 1. proper binding site to mRNA on ribosome </li></ul></ul><ul><ul><li>2. oriented in such a way to read by tRNA easily </li></ul></ul><ul><ul><li>3. release of tRNA after unload </li></ul></ul>Ribosomal RNA
    27. 29. tRNA / sRNA
    28. 30. tRNA / sRNA
    29. 31. <ul><li>Due to early cell differentiation, genetic transformation in animals must occur in the early embryo stage following the union of sex cells </li></ul><ul><ul><li>This is accomplished by using microinjection, to randomly inject DNA into the fertilized call </li></ul></ul><ul><li>Microinjection- is the injection of materials directly into cells using a small glass pipette. </li></ul>Genetic Engineering of Animals
    30. 32. <ul><li>The process of creating transgenetic animals involves three major steps: </li></ul><ul><ul><li>Obtaining embryos </li></ul></ul><ul><ul><li>Microinjectioing embryos </li></ul></ul><ul><ul><li>Culturing and transferring zygotes </li></ul></ul><ul><li>Transgenetic integration- is expressed by the animal of that desired trait. </li></ul>Genetic Engineering of Animals
    31. 33. THE END By: Kay & Jessica

    ×