Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Jan Cremers, Hochschule für Technik Stuttgart (DE) “Designing Complex Membrane Building Envelopes”

46 views

Published on

The Future Envelope 12
Interreg IT-AU FACEcamp project
------------
Conference on Building Envelopes
20-21 May 2019, NOI Techpark, Bolzano (Italy)
"It’s all about performances".

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Jan Cremers, Hochschule für Technik Stuttgart (DE) “Designing Complex Membrane Building Envelopes”

  1. 1. The Future Envelope 12 It’s all about performances Designing Complex Membrane Building Envelopes Prof. Dr.-Ing. Jan Cremers Hochschule für Technik Stuttgart / Hightex GmbH www.interreg.net FACEcamp final event | Bolzano, 20-21 May 2019 FACEcamp is funded by European Regional Development Fund and Interreg V-A Italy-Austria 2014-2020.
  2. 2. Personal Background The Future Envelope 12 final event 20-21 May 2019, Bolzano Hochschule für Technik Stuttgart (HFT) Professor for Building Technology / Architecture and Climate Engineering Hightex GmbH, D-Rimsting Director Research & Development
  3. 3. Structure / Summary • Personal Background • Introduction to 'Membrane Architecture’ • History • Principles of Stabilizing Soft Materials (Prestress / Air Support...) • Formfinding as a Key Step in the Design Process • Process of a Typcial Membrane Project, Role of Different Players • Material Options in Membrane Architecture • Specific Performance Issues of Membrane Architecture • Light • Thermal Properties, Insulation and Comfort • Acoustics • Fire Bahaviour • Flexible PV and Membrane Architecture • Aspects of LCA of Membrane Architecture • Current Research Activities on Membranes @ HFT Stuttgart The Future Envelope 12 final event 20-21 May 2019, Bolzano
  4. 4. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Silicon-coated glass fabric Printed ETFE foil ETFE foil PVC-coated polyester fabric Projekt von Architekturstudenten aus Bochum Quelle: DPA, spiegel.de (2016)
  5. 5. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Allianz Arena Munich (Herzog & de Meuron, Covertex)
  6. 6. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Membrane Materials in the Building Sector !"#$%&'%(#) *+&,'#+-$./ ! "#$%&' ()*+,#$%&' -&.%/0&1 ! 2$3/+$%&1)4#5 -&.%/0&1)$+' 6#/01(6/0317 0$%&'%(#) *+&,'#+-$./ ! 6#/0)8$%&9/$01)46/0317 Source: DETAIL - Construction Manual for Polymers + Membranes, p. 68/94
  7. 7. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 PVC-coated polyester fabric Membrane Materials PTFE-coated glass fabric PTFE-coated glass mesh fabric PTFE –coated acoustic glass fabric, low-e
  8. 8. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Silicon-coated glass fabric Printed ETFE foil ETFE foil Membrane Materials PTFE-fabric
  9. 9. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 ETFE as a foil material ETFE (Ethylen-Tetrafluorethylen) • discovered in 1970 • semi-crystalline, transparent and thermoplastic fluoropolymer • Film production by extrusion (b = 1.55m) • radiation-proof (UV), weatherproof • hardly wettable, electrically insulating • chemically resistant • meltable and weldable (d = 6-10 mm) • Melting temperature ETFE: ~ 270 oC • Continuous service temperature: ~ +/- 150 oC • ~ linear behaviour within limits of use • good-natured failure behaviour and high load-bearing reserves • Thicknesses from 12 to 300 μm (= 0.012-0.3 mm) • typical: • 100 μm for non-load-bearing films (middle lay.) • 200-250 μm for load-bearing films • available variants: • clear • printed / fritted • solid-coloured (different colours and white) • with IR absorbers Printed ETFE Foil ETFE Foil
  10. 10. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 ECTFE (ethylene chlorotrifluoroethylene) vs. ETFE (ethylene tetrafluoroethylene) Source: Jan Cremers ECTFE (250 µm) ETFE (250 µm)
  11. 11. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Source: DETAIL - Construction Manual for Polymers + Membranes, p. 146 !"#$%&'!(#$& &)*+!#)*, -./)0',1/22/($#,% .$*,&#$/"!'3 (4"&'!(#$& &)*+!#)*, -./)0',1)"$%.$*,&#$/"!'3 Transferring three-dimensional surfaces to two-dimensional cutting patterns for pneumatically and mechanically prestressed surfaces
  12. 12. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Source: DETAIL - Construction Manual for Polymers + Membranes, p. 139 Iterative form-finding process for membrane structures
  13. 13. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Engineering
  14. 14. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Engineering
  15. 15. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Engineering
  16. 16. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Construction Details
  17. 17. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Fabrication
  18. 18. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Installation - Steelwork
  19. 19. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Installation
  20. 20. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Energy Transport through a 2-Layer Membrane System convection between layer 1 and 2 (depending on geometry, membrane temperatures etc)
  21. 21. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Aspects of Building Physics of Membrane Cushions Source: DETAIL - Construction Manual for Polymers + Membranes, p. 215
  22. 22. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Sample building physical values for different material combinations Source: DETAIL - Construction Manual for Polymers + Membranes, p. 217
  23. 23. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Silicon-coated glass fabric Printed ETFE foil ETFE foil PVC-coated polyester fabric Membrane Materials Printed ETFE foilPVC-coated polyester fabric Source: DETAIL - Construction Manual for Polymers + Membranes, p. 115
  24. 24. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Silicon-coated glass fabric Printed ETFE foil ETFE foil PVC-coated polyester fabric Foil Materials Source: DETAIL - Construction Manual for Polymers + Membranes, p. 95 Silicon-coated glass fabric Printed ETFE foil ETFE foil PVC-coated polyester fabric
  25. 25. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Silicon-coated glass fabric Printed ETFE foilPVC-coated polyester fabric Coated Textile Materials Source: DETAIL - Construction Manual for Polymers + Membranes, p. 102 Silicon-coated glass fabric Printed ETFE foilPVC-coated polyester fabric
  26. 26. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 ETFE: Accessibility, Durability, Sustainability, Recyclability Accessibility, fall-through protection for ETFE foils Due to the smooth and mostly curved surface, ETFE foils are not regularly walkable, but are regarded as conditionally walkable. If they have passed the fall-through test, they may be walked on by suitably secured assembly personnel. Durability, Sustainability, Recyclability As the ETFE foil does not contain any plasticizers, there is no "self-dissolving". Climatic chamber experiments and long-term tests by Hoechst in Arizona/USA show no significant ageing (e.g. lower breaking strength), so that an unusually long shelf life of 25 to 50 years seems possible for plastics. Similarly, only minor changes in spectral transmittance were observed. ETFE films have a natural "lotus effect", so that transparency and cleanliness seem possible for life without additional external cleaning. Dismantled ETFE foil can be completely granulated and then processed into ETFE injection moulded parts. This is not a 1:1 return as with aluminium, but still a return at a high level.
  27. 27. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 U-values of membrane cushions Source: DETAIL - Construction Manual for Polymers + Membranes, p. 216
  28. 28. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 U-value depending on edge-surface-ratio Source: DETAIL - Construction Manual for Polymers + Membranes, p. 217
  29. 29. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Source: Hightex GmbH Tripol-Haus, Wiesbaden (2018, Lammel Architekten, Ingenieurbüro Leicht, ~ 825 m2)
  30. 30. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Membrane Construction - Sound Insulation and Acoustics Relevant criteria are usually • Noise immission (external noise) • Noise emission (noise from inside) • Room acoustics (noise level in the room, speech intelligibility, suitability for music / events, etc.) In reality, it is usually necessary to consider the acoustic performance for • Sound insulation / absorption • sound reflection • "Shielding" • Noises caused by rain, ice pellets and hail, especially heavy rainfall
  31. 31. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Membranbau – Schallschutz und Raumakustik In comparison to alternatives, typical membrane constructions have a very low weight per area: • Textile fabrics < 1.5 kg/m2 • Foil (ETFE) < 0.5 kg/m2 They are largely massless in airborne sound technology and therefore have hardly any damping effect. Sound insulation Due to their extremely low mass, membrane structures generally have almost no significant sound insulation properties. There are project examples in which the mass was increased by additional layers in order to improve the sound insulation (e.g. by sand or PC sheets). Cushion constructions have a slightly better sound insulation (effect of the flexible double shell, comparatively high air tightness also in the connections). For some applications the good sound transmission and the low sound reflection is advantageous, e.g. in stadiums (especially in comparison to alternatives such as glass or sheet metal). Noise caused by rain, ice pellets and hail In particular, membrane cushion constructions lead to high sound pressure levels in the interior during heavy rain ("drum effect"), which can amount to up to approx. 70 dB. This must be taken into account for the design with regard to the use scenarios. Quelle: form-TL „Neues Bauen mit ETFE-Folien“, 2009
  32. 32. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Membrane Cushions – Important Aspects for Design Membrane Cushions - Important Aspects for Design • Stabilization with overpressure against ambient air, usually 200 -1000 Pascal (= 20 - 100 kg/m2 = 2 -10 cm water height) • Air in sufficient quantity and quality (dry, clean, certain pressure, redundant) • rule of thumb: single air exchange per day with pre-dried air keeps cushions condensate-free • Consideration of compensation factors required: thereby elastic membrane material achieves the respective nominal geometry at a predetermined preload force • Consideration of creep (especially with ETFE): Cushions become minimally larger over time! Retensioning options for mechanically prestressed solutions recommended. • Corners with acute angles are costly to produce and assemble (and potentially tend to leak). • Cushions usually have to be transported after fabrication, for this purpose they are folded: Smaller cushions are advantageous (4 - 20 m2), but cushions up to 600 m2 are possible. • ETFE cushions without additional cable support possible up to approx. 4 m in tensioning direction (in Germany, depending on wind and snow loads to be applied). • Arch-supported cushions are an advantage as they drain rainwater outwards/ down even when deflated. • The installation is the last and usually most delicate step: Weather-dependence (especially wind), higher temperatures are favourable. • Particularly high dependence on weather conditions with separate layer structures • Temporary air support systems are not very suitable as only clean and dry air with defined pressure limits should be used for the cushions.
  33. 33. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Approval Issues Approval Procedures In many countries, membrane materials and structures are non-regulated building materials and types of construction for which, according to building regulations, approval must be applied for in each individual case. This should be considered (time + cost). Worstcase-Szenarios, Security Issues In contrast to overhead glazing, ETFE envelopes are anchored to the substructure with a positive fit all round. They are also "weightless" and thus have no potential danger. Fire Behaviour and Protection According to DIN 4102, most membrane materials are classified as B1 flame-retardant (or even A2) and non- burning dripping. In direct comparison with conventional materials, the calorific values of the extremely thin foil and membrane materials are very low: • 2 x PTFE/Glass, A2: 1,4 kWh/m2 • 2 x Glas-Mesh-Fabric/PTFE-Laminate, B1: 1,8 kWh/m2 • 2 x ETFE (250 μm), B1: 3,6 kWh/m2 • 2 x PES/PVC Type II, B1: 8 kWh/m2 • 20 mm dry wooden formwork: > 32 kWh/m2 Experiments show a very advantageous behaviour: In case of fire and hot smoke gases, ETFE foil shrinks and the seams open: Heat and suffocating smoke gases can escape.
  34. 34. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 ETFE: EPBD, Vandilsm, Burglary Protection, Hail Designing according to EPBD Standard envelopes can often be approved on a stationary calculation basis. ETFE-Envelopes usually require the use of dynamic hygrothermal simulations (balance of the heat flows). Vandalism with ETFE films As a thermoplastic, ETFE film is sensitive to high heat. Tests have shown that neither the embers of a cigarette nor an exploding firework melt through a 200 μm thick ETFE film. Fireworks remnants can be rubbed off by hand. Due to the very high ductility (toughness), incisions cannot be enlarged manually and without tools. Burglary protection for ETFE films ETFE foil can be cut with a very sharp knife under great force. It is therefore not suitable as a theft-proof room closure, but offers no less protection than conventional glazing, which can be overcome by glass cutter or stone. Hail According to a manufacturer, the film has been tested by the Swiss EMPA (Swiss Federal Laboratories for Materials Testing and Research) for simulated hail resistance and complies with SIA 280. Years ago, however, there was a lot of hail in the Zurich area, which then also led to damage to an ETFE cushion roof of a building insurance policy.
  35. 35. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Photovoltaic (PV) Application on Inflatable or Other Membrane Constructions
  36. 36. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019
  37. 37. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Burj Al Arab, Dubai, UAE
  38. 38. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Burj Al Arab, Dubai, UAE
  39. 39. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Bergwacht Bad Tölz (Herzog + Partner Architekten) Source: Jan Cremers
  40. 40. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Bergwacht Bad Tölz (Herzog + Partner Architekten) Source: Jan Cremers
  41. 41. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Bergwacht Bad Tölz (Herzog + Partner Architekten)
  42. 42. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Source: Jan Cremers Architekt: H.-J. Siegert, Bad Tölz Centre for Gerontology, Bad Tölz, Germany
  43. 43. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Source: Jan Cremers Architekt: H.-J. Siegert, Bad Tölz Centre for Gerontology, Bad Tölz, Germany
  44. 44. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Pavillon „Lichtwolke“ für Raumwelten Ludwigsburg (HFT Stuttgart, ABK Stuttgart) Source: raum-welten.de Projekt 2014 / Länge: 25 m / Breite: 9 m / Höhe: 6,5 m / Fläche innen: 200 m2
  45. 45. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Pavillon „Lichtwolke“ für Raumwelten Ludwigsburg (HFT Stuttgart, ABK Stuttgart) Source: raum-welten.de
  46. 46. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 Pavillon „Lichtwolke“ für Raumwelten Ludwigsburg (HFT Stuttgart, ABK Stuttgart) Source: raum-welten.de
  47. 47. HFT Stuttgart | Hightex GmbH | Prof. Dr.-Ing. Jan Cremers | 20.05.2019 HFT-Research Project “follow-e2”: Selective low-E-ETFE: Lab-Sample
  48. 48. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 HFT-Research Project “FMESG”
  49. 49. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 HFT-Research Project “FMESG”
  50. 50. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 HFT-Research Project “FMESG”
  51. 51. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 HFT-Research Project “FMESG”
  52. 52. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 HFT-Research Project “FMESG”
  53. 53. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 HFT-Research Project “FMESG”
  54. 54. !"#$%&'&&()*&$+$!,(-&./$012!$+$Prof. Dr.-Ing. Jan Cremers | 20.05.2019 HFT-Research Project “FMESG”
  55. 55. References • Hochschule für Technik Stuttgart, https://www.hft-stuttgart.de • Hightex GmbH (D-Rimsting), https://www.hightex-membrane.de • Cremers, J.; Palla, N.: Leitfaden zur Errichtung von mehrlagigen Membrankonstruktionen für Planer und Entscheidungsträger. Forschungsprojekt SoFt. HFT Stuttgart (Hrsg.), 218 p., 2019 • Cremers, J.; Marx, H.: Improved Daylight Comfort by a New 3D-Foil That Allows to Trade off Solar Gains and Light Individually. Structural Membranes 2017. IACM / ECCOMAS. Munich 2017 • Cremers, J.; Marx, H.: 3D-ETFE: Development and evaluation of a new printed and spatially transformed foil. Energy Procedia, Volume 122, September 2017 • Cremers, J.; Marx, H.: 'A new printed and spatially transformed ETFE foil', PLEA 2017 Edinburgh • Cremers, J.; Marx, H.: Comparative Study of a New IR-absorbing Film to Improve Solar Shading and Thermal Comfort for ETFE Structures. Procedia Engineering, Volume 155, 2016 • Cremers, J.: 'High Performance Lightweight Building Envelopes Made of Foils and Textiles', in 'Lightweight Landscape – Enhancing Design through Minimal Mass Structures’, Springer, 2015 • Cremers, J.: 'Environmental impact of architectural fabric structures' in 'Fabric Structures in Architecture', 868 p., ed. by Josep Ignasi Llorens, Woodhead Publishing, Cambridge, 2015 • Houtman, R.; Cremers, J. et. al.: TensiNet European Design Guide for Tensile Structures Appendix A5 - Design Recommendations for ETFE Foil Structures, published by TensiNet Association, BE-Brussels, 2013 • Lang, W; Cremers, J. et al. : 'New envelopes for old buildings – the potential of using membrane systems for the thermal retrofitting of existing buildings', IALCCE, CRC Press 2012 • Knippers, J.; Cremers, J.; Lienhard, J.; Gabler, M.: Atlante delle Materie plastiche, UTET Scienze Tecniche, GRANDE ATLANTE DI ARCHITETTURA No. 23, 2011 • Knippers, J.; Cremers, J.; Lienhard, J.; Gabler, M.: Construction Manual for Polymers and Membranes. BIRKHÄUSER/ DETAIL, 2011 The Future Envelope 12 final event 20-21 May 2019, Bolzano
  56. 56. Thank you for your attention! www.interreg.net Prof. Dr.-Ing. Jan Cremers Hochschule für Technik Stuttgart / Hightex GmbH mail@jan-cremers.com / jan.cremers@hft-Stuttgart.de FACEcamp is funded by European Regional Development Fund and Interreg V-A Italy-Austria 2014-2020.

×