Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Plant	  ecophysiological	  measurements	  at	  TERN	  Supersites	  A	  crucial	  link	  between	  vegeta1on	  modeling,	  ...
Importance	  of	  vegeta1on	  	  •  Ecosystem	  hydrology,	  net	       CO2	  exchange	  and	  primary	       produc1vity ...
Plant	  physiological	  traits	  crucial	  for	  	                 ecosystem	  func1oning	  Traits	  such	  as:	  •  Struc...
Variability	  in	  foliar	  traits:	  Acacia	             Acacia genus                                            Acacia t...
TERN	  Supersites	                                 	  •  Opportunity	  to	  iden1fy	  	     key	  drivers	  controlling	  ...
TERN	  Supersites	       Plant	  ecophysiology	  (2010-­‐2014)	                                            FNQ	  Cape	  Tr...
Plant	  physiology	  measurements	  Sampling	  frequency	  •  2	  1mes	  per	  year	  •  wet/dry	  or	  winter/summer	    ...
Plant	  physiology	  measurements	  Leaf	  and	  branch	  analyses	  •  Wide	  range	  of	  leaf	  chemistry	  and	  struc...
Cape	  Tribula1on	  –	  FNQ	                       Lowland	  tropical	  wet	  forest	  •  MAT	  =	  28oC	  •  Completed	  ...
Cape	  Tribula1on	  –	  FNQ	                                                                                              ...
Robson	  Creek	  –	  FNQ	                       Upland	  tropical	  wet	  forest	  •  MAT	  =	  20oC	  •  Completed	  camp...
Warra	  –	  Tasmania	  	                           Temperate	  wet	  forest	  •  MAT	  =	  9oC	  •  Completed	  campaign:	...
Comparison	  of	  wet-­‐forest	  sites	                            Leaf	  chemistry,	  structure	  and	  photosynthesis	  ...
Comparison	  of	  wet-­‐forest	  sites	                                   Respira1on-­‐temperature	  response	  curves	  	...
Comparison	  of	  wet-­‐forest	  sites	               Respira1on-­‐leaf	  nitrogen	  rela1onships	  	  •    Climate	  mode...
Comparison	  of	  wet-­‐forest	  sites	                 Some	  tenta1ve	  conclusions	                                   	...
Time	  table	  of	  upcoming	  campaigns	                   Number	   Site	  campaigns	                                   ...
Linkages	  with	  TERN	  infrastructure	  e-­‐MAST	  (ecosystem	  Modeling	  And	  Scaling	  infrasTructure)	  •  Physiolo...
The	  way	  forward:	  	                   some	  science	  ques1ons	  •  Do	  contras1ng	  ecosystems	  differ	  in	  thei...
Upcoming SlideShare
Loading in …5
×

Owen Atkin_Plant ecophysiology measurements at TERN Supersites: a crucial link between vegetation modelling, biodiversity and ecosystem function

3,832 views

Published on

  • Be the first to comment

Owen Atkin_Plant ecophysiology measurements at TERN Supersites: a crucial link between vegetation modelling, biodiversity and ecosystem function

  1. 1. Plant  ecophysiological  measurements  at  TERN  Supersites  A  crucial  link  between  vegeta1on  modeling,  biodiversity  and  ecosystem  func1on  Owen  Atkin,  Keith  Bloomfield  and  Lasantha  Weerasinghe  Division  of  Plant  Sciences,  Research  School  of  Biology  Australian  Na1onal  University  
  2. 2. Importance  of  vegeta1on    •  Ecosystem  hydrology,  net   CO2  exchange  and  primary   produc1vity  •  Global  C  cycle  and   atmospheric  [CO2]  
  3. 3. Plant  physiological  traits  crucial  for     ecosystem  func1oning  Traits  such  as:  •  Structure  and  chemistry  of  above/below-­‐ground  organs  •  Leaf  metabolism  (e.g.  photosynthesis,  respira1on)  •  Plant  water  rela1ons  
  4. 4. Variability  in  foliar  traits:  Acacia   Acacia genus Acacia tetragonophylla•  Contras1ng  leaf  traits  in   species  adapted  to  inland   and  coastal  regions   Acacia melanoxylon
  5. 5. TERN  Supersites    •  Opportunity  to  iden1fy     key  drivers  controlling  H2O   movement,  C-­‐exchange   and  biodiversity  across  a   wide  range  of  contras1ng   Australian  ecosystems  
  6. 6. TERN  Supersites   Plant  ecophysiology  (2010-­‐2014)   FNQ  Cape  Tribula1on   Alice   FNQ   Mulga   Robson  Ck   Calperum   Mallee   Cumberland  Greater  Western   EucFACE   Woodlands   Warra   Tall  Eucalypt  
  7. 7. Plant  physiology  measurements  Sampling  frequency  •  2  1mes  per  year  •  wet/dry  or  winter/summer    Canopy  posi1ons    •  Upper/mid  canopy,  under-­‐storey    Species  selec1on  and  sampling  •  Number  of  species  sampled  varies   among  Supersites,  depending  on   species  diversity  •  Within-­‐tree  sampling  
  8. 8. Plant  physiology  measurements  Leaf  and  branch  analyses  •  Wide  range  of  leaf  chemistry  and  structure  measurements,  as  well   as  structure  of  water-­‐transpor1ng  cells  in  branches/stems    Plant  water  rela1ons  •  Quan1fica1on  of  traits  that  reflect  whether  a  plant  is  undergoing   water  stress  (or  vulnerable  to),  and  the  capacity  to  transport  water   up  from  the  soil  to  leaves  Leaf  gas  exchange  measurements  •  Standardized  measurements  of  photosynthesis  and  respira1on  •  CO2-­‐response  &  light-­‐response  curves  of  photosynthesis  •  Temperature  response  curves  of  respira1on    
  9. 9. Cape  Tribula1on  –  FNQ   Lowland  tropical  wet  forest  •  MAT  =  28oC  •  Completed  campaign:   September  2010  •  Upcoming  campaign:   March  2014    •  Crane  used  to  compare   upper-­‐  &  lower-­‐canopy   leaves  •  16  canopy  species  •  10  understorey  species  
  10. 10. Cape  Tribula1on  –  FNQ   Lowland  tropical  wet  forest   Mass - based Impact  of  canopy  posiHon     Area - based 5 50 (A) (B) a c 4 a 40 b a •  Sun-­‐exposed  leaves  are  thicker/ Leaf [N] (mg g ) a Leaf [N] (g m -2) -1 c Leaf  N   3 30 a 2 20 1 denser  and  have  higher  area-­‐ 10 based  N  and  P  concs     0 0 0.35 6 (C) c (D) a 0.30 5 than  lower,  shaded  leaves   d 0.25 Leaf [P] (mg g )Leaf [P] (g m ) -1 4-2 0.20 b Leaf  P   a 3 0.15 a a a 2 •  Rates  of  photosynthesis  &   0.10 0.05 1 0.00 0 respiraHon  higher  in  upper   250 50 (E) c b (F) d Leaf mass per unit area (g m )-2 d Specific leaf area (m kg ) -1 200 40 canopy  leaves  than  lower  canopy   2 b 150 c 30 Structure   and  understorey  leaves   100 a 20 a 50 10 0 0 Upper only Upper Lower Understory Upper only Upper Lower Understory Canopy position Canopy position
  11. 11. Robson  Creek  –  FNQ   Upland  tropical  wet  forest  •  MAT  =  20oC  •  Completed  campaign:   September  2012  •  Upcoming  campaign:   March-­‐April  2014    
  12. 12. Warra  –  Tasmania     Temperate  wet  forest  •  MAT  =  9oC  •  Completed  campaign:   March  2012  •  Upcoming  campaign:   July  2013    
  13. 13. Comparison  of  wet-­‐forest  sites   Leaf  chemistry,  structure  and  photosynthesis   25 20 [N] mg g-1 DM Leaf  N   15 30 10 5 0 25 Photosynthe1c  capacity   Amax (umol CO2 m-2 s-1) 1.6 1.4 20 [P] mg g-1 DM 1.2 1.0 Leaf  P   0.8 15 0.6 0.4 160 10 140LMA g m-2 120 5 Structure   100 0 tion reek Warr a 80 bula nC n k a latio Cree Warr Cape Tribu Robson Cape Tri R obso Location Location
  14. 14. Comparison  of  wet-­‐forest  sites   Respira1on-­‐temperature  response  curves     8 FNQ - Cape Tribulation 9oC MAT FNQ -Robson Creek mol CO2 m-2 s-1) Tasmania - Warra 6 o 20 C MAT o 4 28 C MATRespiration (m 2 0 10 20 30 40 50 60 Leaf temperature (0C)
  15. 15. Comparison  of  wet-­‐forest  sites   Respira1on-­‐leaf  nitrogen  rela1onships    •  Climate  models:  N  ogen  used  to  predict  leaf  metabolic  rates     (e.g.  at  common  measuring  temperature  of  25oC)  •  Rdark  at  25oC:    Warra  >  Robson  Ck  >  Cape  Tribula1on   Leaf  area-­‐based   Leaf  dry  mass-­‐based   9oC  MAT   20oC  MAT   9oC  MAT   20oC  MAT   28oC  MAT   28oC  MAT  
  16. 16. Comparison  of  wet-­‐forest  sites   Some  tenta1ve  conclusions    •    Photosynthe1c  capacity  highest  at  warmest  site   Cape  Tribula1on,  FNQ  •  Respiratory  capacity  highest  at  coldest  site   Warra,  Tasmania  •  Implica1ons  for  our  understanding  of  how   temperature  impacts  on  net  carbon  exchange  in   wet  forests  of  eastern  Australia      
  17. 17. Time  table  of  upcoming  campaigns   Number   Site  campaigns   Start  date   Dura1on   End  date   1   Water  rela1ons  methods  at  UTS   25-­‐Feb-­‐13   2   27-­‐Feb-­‐13   2   Warra,  TAS:  winter  visit   8-­‐Jun-­‐13   16   24-­‐Jun-­‐13   3   Robson  Creek  &  Cape  Trib,  FNQ:  wet  season   31-­‐Mar-­‐14   25   25-­‐Apr-­‐14   4   Calperum  Mallee,  SA:  summer  visit   5-­‐Mar-­‐13   15   20-­‐Mar-­‐13   5   Calperum  Mallee,  SA:  winter  visit   8-­‐Jul-­‐13   15   23-­‐Jul-­‐13   6   Gt  West  Woodlands,  WA:  summer  visit   3-­‐Apr-­‐13   16   19-­‐Apr-­‐13   7   Gt  West  Woodlands,  WA:  winter  visit   9-­‐Sep-­‐13   15   24-­‐Sep-­‐13   8   EucFACE,  NSW:  summer  visit   13-­‐Jan-­‐14   11   24-­‐Jan-­‐14   9   EucFACE,  NSW:  winter  visit   9-­‐Jun-­‐14   11   20-­‐Jun-­‐14   10   Alice  Mulga,  NT:  summer  visit   7-­‐Feb-­‐13   6   13-­‐Feb-­‐13   11   Alice  Mulga,  NT:  winter  visit   7-­‐Jul-­‐14   11   18-­‐Jul-­‐14  
  18. 18. Linkages  with  TERN  infrastructure  e-­‐MAST  (ecosystem  Modeling  And  Scaling  infrasTructure)  •  Physiological  data  will  enable  development  and  tes4ng  of  a  new   genera1on  of  biosphere-­‐atmosphere  models     4ed  firmly  to  observa4ons  and  that  take  account  of  the  diversity  of   physiological  responses  across  species  OzFlux  towers  •  Will  provide  data     needed  to  disentangle   ecosystem  CO2  fluxes  into   canopy  and  non-­‐canopy   components    
  19. 19. The  way  forward:     some  science  ques1ons  •  Do  contras1ng  ecosystems  differ  in  their   physiological  vulnerability  to  extreme  weather   events  such  as  droughts  and  heat-­‐waves?      •  Can  physiological  ‘1pping  points’  be  iden1fied   and  if  so,  do  they  differ  among  environments?  •  What  drives  the  1ming  of  phenological  events   such  as  leaf-­‐drop  &  flowering  in  the  absence  of   marked  temp  or  day-­‐length  signals?    

×