Successfully reported this slideshow.
Your SlideShare is downloading. ×

Advanced Hemodynamics

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Upcoming SlideShare
Hemodynamics
Hemodynamics
Loading in …3
×

Check these out next

1 of 114 Ad

More Related Content

Slideshows for you (20)

Advertisement

Similar to Advanced Hemodynamics (20)

Advertisement

Advanced Hemodynamics

  1. 1. Introduction to HEMODYNAMIC MONITORING
  2. 2. DEFINITION PURPOSE DEFINITION HEMODYNAMIC MONITORING <ul><ul><li>Measuring and monitoring the factors that influence the force and flow of blood. </li></ul></ul><ul><ul><li>To aid in diagnosing, monitoring and managing critically ill patients. </li></ul></ul>
  3. 3. INDICATIONS <ul><li>To diagnose shock states </li></ul><ul><li>To determine fluid volume status </li></ul><ul><li>To measure cardiac output </li></ul><ul><li>To monitor and manage unstable patients </li></ul><ul><li>To assess hemodynamic response to therapies </li></ul><ul><li>To diagnose primary pulmonary hypertension, valvular disease, intracardiac shunts, cardiac tamponade, and pulmonary embolus </li></ul>
  4. 4. CONTRAINDICATIONS for an invasive PA Catheter <ul><li>Tricuspid or pulmonary valve mechanical prosthesis </li></ul><ul><li>Right heart mass (thrombus and/or tumor) </li></ul><ul><li>Tricuspid or pulmonary valve endocarditis </li></ul>
  5. 5. Clinical Scenario Use of PAC <ul><li>Management of complicated MI </li></ul><ul><ul><li>Severe LVF/RMI (precise management of heart failure) </li></ul></ul><ul><li>Assessment of respiratory distress </li></ul><ul><ul><li>Cardiogenic vs non-cardiogenic pulmonary edema </li></ul></ul><ul><li>Assessment/Diagnosis of shock/ cardiac dysfunction </li></ul><ul><ul><li>Cardiogenic/hypovolemic/septic </li></ul></ul><ul><ul><li>Tamponade </li></ul></ul><ul><ul><li>Pulmonary embolism </li></ul></ul><ul><ul><li>Severe dilated cardiomyopathy </li></ul></ul><ul><li>Management of Pulmonary Hypertension </li></ul><ul><li>Management of high-risk surgical patients </li></ul><ul><ul><li>CABG, vascular, valvular, aneurysm repair </li></ul></ul><ul><li>Management of volume requirements in the critically ill </li></ul><ul><ul><li>ARF, GI bleed, trauma, sepsis (precise management) </li></ul></ul>
  6. 6. Hemodynamic Values <ul><li>CO / CI </li></ul><ul><li>SV / SVI or SI </li></ul><ul><li>SVO 2 </li></ul><ul><li>RVEDVI or EDVI </li></ul><ul><li>SVR / SVRI </li></ul><ul><li>PVR / PVRI </li></ul><ul><li>RVEF </li></ul><ul><li>VO 2 / VO 2 I </li></ul><ul><li>DO 2 / DO 2 I </li></ul><ul><li>PAOP </li></ul><ul><li>CVP </li></ul><ul><li>PAP </li></ul><ul><li>Cardiac Output/Cardiac Index </li></ul><ul><li>Stroke Volume/Stroke Volume Index </li></ul><ul><li>Mixed Venous Saturation </li></ul><ul><li>RV End-Diastolic Volume </li></ul><ul><li>Systemic Vascular Resistance </li></ul><ul><li>Pulmonary Vascular Resistance </li></ul><ul><li>RV Ejection Fraction </li></ul><ul><li>Oxygen Consumption </li></ul><ul><li>Oxygen Delivery </li></ul><ul><li>Pulmonary Artery Occlusive Pressure </li></ul><ul><li>Central Venous Pressure </li></ul><ul><li>Pulmonary Artery Pressure </li></ul>
  7. 7. Index Values <ul><li>Values normalized for body size (BSA) </li></ul><ul><ul><li>CI is 2.5 – 4.5 L/min/m 2 </li></ul></ul><ul><ul><li>SVRI is 1970 – 2390 dynes/sec/cm-5/m 2 </li></ul></ul><ul><ul><li>SVI or SI is 35 – 60 mL/beat/m 2 </li></ul></ul><ul><ul><li>EDVI is 60 – 100 mL/m2 </li></ul></ul>
  8. 8. Importance of Index Values <ul><li>Mr. Smith </li></ul><ul><ul><li>47 y/o male </li></ul></ul><ul><ul><li>60 kg </li></ul></ul><ul><ul><li>CO = 4.5 </li></ul></ul><ul><ul><li>6 ft tall (72 inches) </li></ul></ul><ul><ul><li>BSA = 1.8 </li></ul></ul><ul><ul><li>CI = 2.5 L/min/m 2 </li></ul></ul><ul><li>Mr. Jones </li></ul><ul><ul><li>47 y/o male </li></ul></ul><ul><ul><li>120 kg </li></ul></ul><ul><ul><li>CO = 4.5 </li></ul></ul><ul><ul><li>6 ft tall (72 inches) </li></ul></ul><ul><ul><li>BSA = 2.4 </li></ul></ul><ul><ul><li>CI = 1.9 L/min/m2 </li></ul></ul>
  9. 9. Basic Concepts <ul><li>Cardiac Output - amount of blood pumped out of the ventricles each minute </li></ul><ul><li>Stroke Volume - amount of blood ejected by the ventricle with each contraction </li></ul><ul><li>CO = HR x SV </li></ul><ul><li>Decreased SV usually produces compensatory tachycardia.. </li></ul><ul><ul><li>So. . .changes in HR can signal changes in CO </li></ul></ul>
  10. 10. Basic Concepts <ul><li>Systemic Vascular Resistance </li></ul><ul><ul><li>Measurement of the resistance (afterload) of blood flow through systemic vasculature </li></ul></ul><ul><ul><li>*Increased SVR/narrowing PP = vasoconstriction </li></ul></ul><ul><ul><li>*Decreased SVR/widening PP = vasodilation </li></ul></ul><ul><li>Blood Pressure </li></ul><ul><ul><li>BP = CO x SVR </li></ul></ul><ul><li>** SVR can increase to maintain BP despite inadequate CO </li></ul><ul><ul><li>Remember CO = HR x SV </li></ul></ul>
  11. 11. Basic Concepts <ul><li>BP = CO x SVR </li></ul><ul><li>CO and SVR are inversely related </li></ul><ul><ul><li>CO and SVR will change before BP changes </li></ul></ul><ul><ul><li>* Changes in BP are a late sign of hemodynamic alterations </li></ul></ul>
  12. 12. Stroke Volume <ul><li>Components Stroke Volume </li></ul><ul><ul><li>Preload: the volume of blood in the ventricles at end diastole and the stretch placed on the muscle fibers </li></ul></ul><ul><ul><li>Afterload: the resistance the ventricles must overcome to eject it’s volume of blood </li></ul></ul><ul><ul><li>Contractility: the force with which the heart muscle contracts (myocardial compliance) </li></ul></ul>
  13. 13. Stroke Volume Preload Afterload Contractility Filling Pressures & Volumes Resistance to Outflow Strength of Contraction CVP PAOP (PAD may be used to estimate PAOP) PVR, MPAP SVR, MAP RVSV LVSV Fluids, Volume Expanders Diuretics Vasoconstrictors Vasodilators Inotropic Medications
  14. 14. Clinical Measurements of Preload <ul><li>Left Side: PAOP/LAP </li></ul><ul><li>PAD may be used to estimate PAOP in the absence of pulmonary disease/HTN </li></ul><ul><li>The pulmonary vasculature is a low pressure system in the absence of pulmonary disease </li></ul><ul><li>These pressures are “accurate” estimations of preload only with perfect compliance of heart and lungs </li></ul><ul><li>Right Side: CVP/RAP * filling pressures </li></ul>
  15. 15. Clinical Measurements of Afterload <ul><li>RV Afterload </li></ul><ul><ul><li>MPAP </li></ul></ul><ul><ul><li>PVR = 150-250 dynes/sec/cm -5 </li></ul></ul><ul><ul><li>PVRI = 255-285 dynes/sec/cm -5/ m 2 </li></ul></ul><ul><li>LV Afterload </li></ul><ul><ul><li>MAP </li></ul></ul><ul><ul><li>SVR = 800–1300 dynes/sec/cm-5 </li></ul></ul><ul><ul><li>SVRI = 1970-2390 dynes/sec/cm-5/m2 </li></ul></ul>
  16. 16. Clinical Estimation of Contractility <ul><li>Cardiac Output * flow </li></ul><ul><ul><li>Normal = 4-8 L/min </li></ul></ul><ul><li>Cardiac Index </li></ul><ul><ul><li>Normal = 2.5-4.5 L/min/m2 </li></ul></ul><ul><li>Stroke Volume *pump performance </li></ul><ul><ul><li>Normal = 50-100 ml/beat </li></ul></ul><ul><li>Stroke volume Index </li></ul><ul><ul><li>Normal = 30-50 ml/beat/m2 </li></ul></ul>
  17. 17. Ventricular Compliance <ul><li>Ability of the ventricle to stretch </li></ul><ul><li>Decreased with LV hypertrophy, MI, fibrosis, HOCM </li></ul><ul><li>*If compliance is decreased, small changes in volume produce large changes in pressure </li></ul>
  18. 18. The PA Catheter
  19. 19. Pulmonary Artery Catheters
  20. 20. The Pulmonary Artery Catheter
  21. 21. “ Swan-Ganz” PA Catheter <ul><li>Large Markers = 50cm </li></ul><ul><li>Small Markers = 10cm </li></ul><ul><li>10 cm between small black markers on catheter </li></ul><ul><li>Several types </li></ul><ul><ul><li>Thermodilutional CO </li></ul></ul><ul><ul><li>CCO </li></ul></ul><ul><ul><li>Precep </li></ul></ul><ul><ul><li>NICCO </li></ul></ul><ul><li>Multiple lumens </li></ul>
  22. 22. BREAK Take 5 MINUTES
  23. 23. Demonstration of PA catheter and Hands-on practice
  24. 24. <ul><li>Bleeding </li></ul><ul><li>Infection </li></ul><ul><li>Dysrhythmias </li></ul><ul><li>Pulmonary Artery Rupture </li></ul><ul><li>Pneumothorax </li></ul><ul><li>Hemothorax </li></ul><ul><li>Valvular Damage </li></ul><ul><li>Embolization </li></ul><ul><li>Balloon Rupture </li></ul><ul><li>Catheter Migration </li></ul>Risks With The PA Catheter
  25. 25.
  26. 26. Hemodynamic Waveforms
  27. 27. PA-Catheter Positioning <ul><li>Right </li></ul><ul><li>Atrium </li></ul><ul><li>Right </li></ul><ul><li>Ventricle </li></ul><ul><li>Pulmonary </li></ul><ul><li>Artery </li></ul><ul><li>Pulmonary </li></ul><ul><li>Artery </li></ul><ul><li>Occlusion </li></ul><ul><li>Pressure </li></ul>
  28. 28. PAC Insertion Sequence
  29. 29. Post PA Catheter Insertion <ul><li>Assess ECG for dysrhythmias. </li></ul><ul><li>Assess for signs and symptoms of respiratory distress. </li></ul><ul><li>Ascertain sterile dressing is in place. </li></ul><ul><li>Obtain PCXR to check placement. </li></ul><ul><li>Zero and level transducer(s) at the phlebostatic axis. </li></ul><ul><li>Assess quality of waveforms (i.e., proper configuration, dampening, catheter whip). </li></ul><ul><li>Obtain opening pressures and wave form tracings for each waveform. </li></ul><ul><li>Assess length at insertion site. </li></ul><ul><li>Ensure that all open ends of stopcocks are covered with sterile dead-end caps (red dead-end caps, injection caps, or male Luer lock caps). </li></ul><ul><li>Update physician of abnormalities. </li></ul>
  30. 30. General Rules for Hemodynamic Measurements <ul><li>Measure all pressures at End-Expiration </li></ul><ul><ul><ul><li>“ Patient Peak” </li></ul></ul></ul><ul><ul><ul><li>“ Vent Valley” </li></ul></ul></ul>
  31. 31. Phlebostatic Axis 4th ICS Mid-chest, regardless of head elevation
  32. 32. Phlebostatic Axis 4th ICS Mid-chest, regardless of head elevation
  33. 33. Spontaneous Respirations <ul><li>Measure all pressures at end-expiration </li></ul><ul><li>At top curve with spontaneous respiration </li></ul><ul><ul><li>“ patient-peak” </li></ul></ul><ul><li>Intrathoracic pressure decreases during spontaneous inspiration </li></ul><ul><ul><li>Negative deflection on waveforms </li></ul></ul><ul><li>Intrathoracic pressure increases during spontaneous expiration </li></ul><ul><ul><li>Positive deflection on waveforms </li></ul></ul>
  34. 34. Spontaneous Respirations
  35. 35. Mechanical Ventilation <ul><li>Measure all pressures at end-expiration </li></ul><ul><li>At bottom curve with mechanical ventilator </li></ul><ul><ul><li>“ vent-valley” </li></ul></ul><ul><li>Intrathoracic pressure increases during positive pressure ventilations ( inspiration ) </li></ul><ul><ul><li>Positive deflection on waveforms </li></ul></ul><ul><li>Intrathoracic pressure decreases during positive pressure expiration </li></ul><ul><ul><li>Negative deflection on waveforms </li></ul></ul>
  36. 36.
  37. 37.
  38. 38. General Rules for Hemodynamic Measurements <ul><li>Measure all pressures with the HOB at a … consistent level of elevation </li></ul><ul><li>Level the transducer at the phlebostatic axis </li></ul><ul><ul><ul><li>4th intercostal space, mid-chest </li></ul></ul></ul><ul><li>Print strips with one ECG and one pressure channel </li></ul><ul><ul><li>adequate scale </li></ul></ul><ul><ul><li>allows accurate waveform analysis </li></ul></ul><ul><li>Confirm monitor pressures with pressures obtained by waveform analysis </li></ul><ul><ul><li>** correct waveform analysis is more accurate than pressures from the monitor </li></ul></ul>
  39. 39. Review of Normal Values <ul><li>RAP (CVP) </li></ul><ul><li>RVP </li></ul><ul><li>PAP </li></ul><ul><li>PAOP </li></ul>0-8 mmHg 15-30/0-8 mmHg 15-30/6-12 mmHg 8 - 12 mmHg
  40. 40. PA INSERTION WAVEFORMS <ul><li>A = RA (CVP) Waveform </li></ul><ul><li>B = RV Waveform </li></ul><ul><li>C = PA Waveform </li></ul><ul><li>D = PAWP Waveform </li></ul>B C D A
  41. 41. PAC Insertion Sequence
  42. 42. Right Atrium (CVP) Normal Value 0-8 mmHg RAP = CVP Wave Fluctuations Due To Contractions
  43. 43. Components of the RA (CVP) Waveform <ul><li>a-wave </li></ul><ul><ul><li>atrial contraction (systole) </li></ul></ul><ul><ul><li>begins in the PR interval and QRS on the ECG </li></ul></ul><ul><ul><li>correct location for measurement of CVP/RAP </li></ul></ul><ul><ul><ul><li>* average the peak & trough of the a-wave </li></ul></ul></ul><ul><ul><ul><li>* (a-Peak + a-trough)/2 = CVP </li></ul></ul></ul><ul><ul><li>May not see if no atrial contractions as with. . . </li></ul></ul>
  44. 44. <ul><li>Absent a waves </li></ul><ul><ul><li>Atrial fibrillation </li></ul></ul><ul><ul><li>Paced rhythm </li></ul></ul><ul><ul><li>Junctional rhythm </li></ul></ul><ul><li>Measure at the end of the QRS </li></ul>Components of the RA (CVP) Waveform
  45. 45. Absent A Wave *PACEP.ORG 2007 * Measure at end of QRS!
  46. 46. <ul><li>c-wave </li></ul><ul><ul><li>tricuspid valve closure </li></ul></ul><ul><ul><li>Between ST segment </li></ul></ul><ul><ul><li>Between a and v waves </li></ul></ul><ul><ul><li>*may or may not be present </li></ul></ul><ul><li>v-wave </li></ul><ul><ul><li>Atrial filling </li></ul></ul><ul><ul><li>begins at the end of the QRS to the beginning of the T wave (QT interval) </li></ul></ul>Components of the RA (CVP) Waveform
  47. 47. CVP Waveform Analysis
  48. 48. CVP Waveform Analysis Normal CVP Waveform
  49. 49. Reading the RA CVP) Waveform
  50. 50. CVP Waveform Vented Patient
  51. 51. CVP Waveform Vented Patient – “Vent Valley” a wave
  52. 52. CVP Waveform Analysis Artifact in Waveform
  53. 53. Right Ventricle Normal Value 15-25/0-8 mmHg Catheter In RV May Cause Ectopy Swan Tip May Drift From PA to RV
  54. 54. RV Waveform
  55. 55. Components of the RV Waveform <ul><li>Usually only seen with insertion </li></ul><ul><li>Systole </li></ul><ul><ul><li>measured at the peak </li></ul></ul><ul><ul><li>peak occurs after the QRS </li></ul></ul><ul><li>Diastole </li></ul><ul><ul><li>measured just prior to the the onset of systole </li></ul></ul><ul><li>No dicrotic notch </li></ul><ul><ul><li>Dicrotic notch indicates valve closure </li></ul></ul><ul><ul><li>*** Aids in differentiation from the PA tracing </li></ul></ul>
  56. 56. Reading the RV Waveform
  57. 57. RV Waveform Interventions <ul><li>After PA catheter is correctly placed, RV waveform should not be seen. If it is, then interventions are necessary: </li></ul><ul><ul><li>Check for specific unit protocol first </li></ul></ul><ul><ul><li>Inflate balloon with patient lying on their left side (catheter may float back into PA) </li></ul></ul><ul><ul><li>With deflated balloon, pull catheter into RA placement or remove completely </li></ul></ul><ul><ul><li>Document your actions and notify physician </li></ul></ul>** An RN should NEVER advance the catheter!
  58. 58. Pulmonary Artery Normal Value 15-25/8-15 mmHg Dicrotic Notch Represents PV Closure PAD Approximates PAWP (LVEDP) (in absence of lung or MV disease)
  59. 59. PA Waveform
  60. 60. Components of the PA Waveform <ul><li>Systole </li></ul><ul><ul><li>measured at the peak of the wave </li></ul></ul><ul><li>Diastole </li></ul><ul><ul><li>measured just prior to the upstroke of systole (end of QRS) </li></ul></ul><ul><ul><li>Higher than RV diastolic pressure </li></ul></ul>
  61. 61. <ul><li>Dicrotic notch </li></ul><ul><ul><li>indicates pulmonic valve closure </li></ul></ul><ul><ul><li>aids in differentiation from RV waveform </li></ul></ul><ul><ul><li>aids in determining waveform quality </li></ul></ul><ul><li>Anachrotic Notch </li></ul><ul><ul><li>Before upsweep to systole </li></ul></ul><ul><ul><li>Opening of pulmonic valve </li></ul></ul>Components of the PA Waveform
  62. 62. Reading the PA Waveform Dicrotic notch
  63. 63. PA Waveform Identify that it is the PA tracing Look at the scale What is the PAP? 10/20/30
  64. 64. PA Waveform Look for dichrotic notch Look at scale What is the PAP?
  65. 65. PAOP / Wedge Normal Value 8-12 mmHg Balloon Floats and Wedges in Pulmonary Artery PAWP = LAP = LVEDP Wedging Can Cause Capillary Rupture
  66. 66. <ul><li>a-wave </li></ul><ul><ul><li>atrial contraction </li></ul></ul><ul><ul><li>correct location for measurement of PAOP </li></ul></ul><ul><ul><ul><li>average the peak & trough of the a-wave </li></ul></ul></ul><ul><ul><li>begins near the end of QRS or the QT segment </li></ul></ul><ul><ul><ul><li>* Delayed ECG correlation from CVP since PA catheter is further away from left atrium </li></ul></ul></ul>Components of the PA Waveform
  67. 67. <ul><li>c-wave </li></ul><ul><ul><li>rarely present </li></ul></ul><ul><ul><li>represents mitral valve closure </li></ul></ul><ul><li>v-wave </li></ul><ul><ul><li>represents left atrial filling </li></ul></ul><ul><ul><li>begins at about the end of the T wave </li></ul></ul>Components of the PA Waveform
  68. 68. Reading the PAOP Waveform <ul><ul><li>Begins within the QRS or the QT segment </li></ul></ul>
  69. 69. Wedging Can Cause Pulmonary Artery Rupture
  70. 70. PA Tracing to PAOP Tracing to PA Tracing
  71. 71. Post PAC Insertion <ul><li>Assess ECG for dysrythmias </li></ul><ul><li>Assess for S/S of respiratory distress </li></ul><ul><li>Be sure sterile dressing is applied </li></ul><ul><li>Order CXR for placement </li></ul><ul><ul><li>Get MD order before infusing through ports </li></ul></ul><ul><li>Zero and level all transducers </li></ul><ul><li>Assess quality of waveforms </li></ul><ul><ul><li>Dampening, proper configuration, scale </li></ul></ul><ul><li>Obtain opening pressures and waveform tracings for each waveform </li></ul><ul><li>Note length at insertion site </li></ul><ul><li>Place proper luer-lock connectors to lumens and cap all ports </li></ul><ul><li>Notify MD of any abnormalities </li></ul>
  72. 72. Precautions <ul><li>Always set alarms on monitor </li></ul><ul><ul><li>20mmHg above and below pt baseline </li></ul></ul><ul><li>If in PAOP with balloon down, have pt cough, deep breath, change position </li></ul><ul><li>If unable to dislodge from PAOP, notify MD immediately to reposition catheter </li></ul><ul><ul><li>CXR to reconfirm placement </li></ul></ul><ul><li>If pt coughs up blood or it is suctioned via ETT, suspect PA rupture and notify MD immediately </li></ul>
  73. 73. Intermittent Thermodilution CO <ul><li>Based on measuring blood temperature changes </li></ul><ul><li>Must know the following: </li></ul><ul><ul><li>Computation constant </li></ul></ul><ul><ul><li>Volume of injectate </li></ul></ul><ul><ul><li>Temperature of injectate </li></ul></ul><ul><ul><ul><li>Iced or room temperature </li></ul></ul></ul><ul><li>Inject rapidly and smoothly over 4 seconds max </li></ul><ul><li>Thermister at end of PA catheter detects change in temperature and creates CO curve </li></ul><ul><li>At least 3 measurements and average results </li></ul>
  74. 74. Cardiac Output via Thermodilution *PACEP.ORG 2007
  75. 75. Averaging CO Measurements *PACEP.ORG 2007
  76. 76. Continuous Cardiac Output <ul><li>A heat signal is produced by the thermal filament of the PA catheter </li></ul><ul><li>The signal is detected by the thermistor on the PA catheter and is converted into a time/temperature curve </li></ul><ul><li>The CCO computer produces a time-averaged calculation </li></ul><ul><ul><li>Over 3 minutes </li></ul></ul><ul><ul><li>Updates every 30-60 seconds </li></ul></ul>
  77. 77. Mixed Venous Oxygen Saturation
  78. 78. Mixed Venous Oxygenation Monitoring (SvO2) <ul><li>Measures the amount of O 2 in the blood (on the Hgb molecule) returned to the heart </li></ul><ul><ul><li>Helps to demonstrate the balance between O 2 supply & demand in the body (tissue oxygenation) </li></ul></ul><ul><li>Helps to interpret hemodynamic dysfunction when used with other measurements </li></ul><ul><li>Normal: 70% (60-80) </li></ul>
  79. 79. Mixed Venous Oxygen Saturation <ul><li>End result of O 2 delivery and consumption </li></ul><ul><li>Measured in the pulmonary artery </li></ul><ul><ul><li>An average estimate of venous saturation for the whole body. </li></ul></ul><ul><ul><li>**Does not reflect separate tissue perfusion or oxygenation </li></ul></ul>
  80. 80. Mixed Venous Oxygen Saturation <ul><li>Continuous measurement </li></ul><ul><li>“ Early” warning signal to detect oxygen transport imbalances </li></ul><ul><li>Evaluates the effect of the therapeutic interventions </li></ul><ul><li>Identify potential patient care consequences (turning, suctioning) </li></ul>
  81. 81. Mixed Venous Oxygen Saturation <ul><li>There are four factors that affect SVO 2 : </li></ul><ul><li>Hemoglobin </li></ul><ul><li>Cardiac output </li></ul><ul><li>Arterial oxygen saturation (SaO 2 ) </li></ul><ul><li>Oxygen consumption (VO 2 ) </li></ul>
  82. 82. SvO2 Application In a case of increased SVR with decreased CO. Nitroprusside was started. The increase in SvO 2 and increase in CO reflects the appropriateness of therapy.
  83. 83. Ways To Increase O2 Delivery <ul><li>Increase CO </li></ul><ul><ul><li>increase HR, optimize preload, decrease afterload, add positive inotropes </li></ul></ul><ul><li>Increase Hgb, increase SaO2 </li></ul><ul><li>Improve pulmonary function </li></ul><ul><ul><li>pulmonary toilet, prevent atelectasis </li></ul></ul><ul><ul><li>ventilation strategies </li></ul></ul>
  84. 84. Ways To Decrease O2 Demand <ul><li>Decrease muscle activity </li></ul><ul><ul><li>sedatives, (paralytics) </li></ul></ul><ul><ul><li>prevent/control seizures </li></ul></ul><ul><ul><li>prevent/control shivering </li></ul></ul><ul><ul><li>space care activities </li></ul></ul><ul><li>Decrease temperature </li></ul><ul><ul><li>prevent/control fever </li></ul></ul>
  85. 85. Removal of the PA Catheter <ul><li>Usually performed by the nurse with an MD order </li></ul><ul><li>Place patient supine with HOB flat </li></ul><ul><ul><li>(reduces chance of air embolus) </li></ul></ul>
  86. 86. Removal of the PA Catheter <ul><li>Make sure balloon is down, have patient inhale and hold breath, pull PA catheter out smoothly </li></ul><ul><ul><li>monitor for ventricular ectopy </li></ul></ul><ul><ul><li>stop immediately & notify MD if resistance is met </li></ul></ul>
  87. 87. Removal of the PA Catheter
  88. 88. Removal of the PA Catheter <ul><li>If patient is unable to perform breath hold: </li></ul><ul><ul><li>Pull PA catheter during period of positive intrathoracic pressure to minimize chance of venous air embolus </li></ul></ul><ul><ul><li>Mechanically ventilated patient </li></ul></ul><ul><ul><ul><li>pull PA catheter during delivery of vent breath </li></ul></ul></ul><ul><ul><li>Spontaneously breathing patient </li></ul></ul><ul><ul><li>pull PA catheter during exhalation </li></ul></ul>
  89. 89. Removal of the PA Catheter <ul><li>If introducer sheath (cordis) is to remain in place, it must be capped . </li></ul><ul><li>If introducer sheath (cordis) is to be removed, repeat the steps used for PA catheter removal. </li></ul><ul><li>Hold pressure on the site (5-10 min.), keep patient flat until hemostasis is achieved. </li></ul><ul><li>Apply sterile dressing or band-aid. </li></ul>
  90. 90. Break Take 5 Minutes
  91. 91. Hemodynamic Waveform Practice
  92. 92. MEASUREMENTS
  93. 93. SAMPLE MEASUREMENTS
  94. 94. SAMPLE MEASUREMENTS
  95. 95. SAMPLE MEASUREMENTS
  96. 96. SAMPLE MEASUREMENTS
  97. 97. SAMPLE MEASUREMENTS
  98. 98. SAMPLE MEASUREMENTS
  99. 99. SAMPLE MEASUREMENTS
  100. 100. SAMPLE MEASUREMENTS
  101. 101. SAMPLE MEASUREMENTS
  102. 102. SAMPLE MEASUREMENTS
  103. 103. SAMPLE MEASUREMENTS
  104. 104. SAMPLE MEASUREMENTS
  105. 105. SAMPLE MEASUREMENTS
  106. 106. SAMPLE MEASUREMENTS
  107. 107. Review
  108. 108. Review <ul><li>The PA diastolic pressure is measured at which part of the waveform? </li></ul>Just prior to the upstroke of systole
  109. 109. Review <ul><li>Which part of the CVP and PAOP waveforms is used to calculate pressures? </li></ul>The a wave
  110. 110. Review <ul><li>The RV waveform can be distinguished from the PA waveform by: </li></ul>RV has lower diastolic pressure and no dicrotic notch
  111. 111. Review <ul><li>The v wave of the CVP & PAOP waveforms represents: </li></ul>Atrial filling
  112. 112. Review <ul><li>The a wave of the CVP waveform correlates with which electrical event? </li></ul>The PR interval on the ECG
  113. 113. Review <ul><li>The a wave of the PAOP waveform correlates with which electrical event? </li></ul>The QRS on the ECG
  114. 114. Questions?

Editor's Notes

  • Changes in CO and SV!
  • The CO and the SVR will modulate to maintain blood pressure even if CO is very low. Because of this phenomenon, the BP is not a good measure of cardiac output
  • The pulse pressure tells you more about afterload than the BP does
  • The Cordis Offers A Large Bore Infusion Port There Are Ten Types Of Swan-Ganz Catheters VIP Catheter Has Three Other Infusion Ports Large Markers = 50cm, Small Markers = 10cm Components: 1. Proximal port – approximately 30 cm from tip of catheter. Also known as the CVP port (central venous pressure). It lies in the right atrium and measures CVP. It can be used for infusion of IV solutions or medications, for drawing blood and for injecting cardiac output boluses. It is usually color coded blue. 2. Distal port – opening is at the tip (end) of the catheter. A lso known as the PA port. It lies directly in the pulmonary artery and measures the pulmonary artery pressures (PAP), systolic (PAS), and diastolic (PAD). It also measures the pulmonary capillary wedge pressure (PCWP) when the balloon is inflated. The PA pressures should always be monitored continuously . NEVER USE the PA port for medication infusion. It c an be used for drawing &amp;quot;mixed venous&amp;quot; blood gas samples. It is u sually color coded yellow. 3. Thermistor and connector port T he thermistor connector connects the pulmonary catheter to the cardiac output computer. The connector is at the end of a separate catheter lumen outside the patient thermistor wire. Blood temperature is transmitted within the lumen (the core temperature is the most accurate reflection of the body temperature). It is used in determining cardiac output. The connector tip should always have a protective covering to protect patient from microshock. It is usually color coded yellow with a red connector. 4. Balloon port The balloon port is located &lt; 1 cm from the tip of the catheter. When the balloon is inflated with approximately 0.8 to 1.5 cc of air, the catheter will become lodged (wedged) in the pulmonary artery and gives a wedge tracing. It r eflects the pressures that are in the left side of the heart when inflated. DO NOT INFLATE WITH LIQUID---- ALWAYS INFLATE WITH AIR. When deflated, turn stopcock to off position and leave syringe connect to the port. It is usually color coded red. 5. A 5 - lumen Swan Ganz catheter has either an infusion port or a pacing port A pacing port allows for insertion of a transvenous pacing wire. The infusion port allows for infusion of IV solutions or medications. It is usually color coded white.
  • EQUIPMENT NECESSARY FOR INSERTION Flush solution for transducer system Flush solution for cardiac output system Arterial access line Disposable triple pressure transducer system Pulmonary artery catheter                                Monitor, module, electrodes, cables Central line kit                            Transducer holder, I.V. pole, pressure bag Emergency resuscitation equipment     Prepackaged Introducer Kit; sutures Sterile gowns, gloves, and masks
  • Correct the students about the location of the phlebostatic axis
  • 1) Normal Pressures: RA = 1-7 RV = 15-25/1-7 PA = 15-25/8-15 PAD = 8-15 PAWP = 6-12
  • It is essential that you be able to recognize the RV waveform – If the tip migrates to the RV during monitorin it can cause dysrhythmias. The proper intervention is to have an MD or qualified PA/CRNA advance the catheter or you can pull the tip back to the RA. Check your unit’s protocols.
  • Action taken will depend on unit protocols and availability of an MD or advanced practitioner to reposition the catheter. Know your unit’s protocols before you do anything
  • Looks like a CVP waveform, but the timing is different
  • Looks like a CVP waveform – just occurs later
  • CVP Example
  • CVP Answer
  • Example 1
  • Answer 1
  • Example 2
  • Answer 2
  • Example 3
  • Answer 3
  • Example 4
  • Answer 4
  • Example 5
  • Answer 5
  • Example 6
  • Answer 6

×